一、pd.merge()

参数说明
left参与合并的左侧DataFrame
right参与合并的右侧DataFrame
how

如何合并。值为{'left','right','outer','inner'},默认为'inner'

left: 仅保留左侧DataFrame中存在的键

right:仅保留右侧DataFrame中存在的键

outer:保留左右DataFrame键的交集

inner:保留左右DataFrame键的并集

on用于连接的列名,默认是两个DataFrame重叠的列
left_on左侧DataFrame中用作连接键的列
right_on右侧DataFrame中用作连接键的列
left_index{True,False},将左侧的行索引用作其连接键
right_index{True,False},将右侧的行做引用作其连接键
suffixes字符串值元组,用于追加到重叠列名的后缀,默认为('_x','_y')

(1)先创建两个DataFrame

>>> left = pd.DataFrame({'姓名':['张某','李某','段某'],'年龄':[22,26,24]})
>>> left
姓名 年龄
0 张某 22
1 李某 26
2 段某 24 >>> right = pd.DataFrame({'姓名':['张某','李某','钱某'],'籍贯':['北京','河北','江苏']})
>>> right
姓名 籍贯
0 张某 北京
1 李某 河北
2 钱某 江苏

(2)在默认情况下,将重叠列当做键,也可通过参数on指定;

>>> pd.merge(left,right)
姓名 年龄 籍贯
0 张某 22 北京
1 李某 26 河北 #通过参数on指定
>>> pd.merge(left,right,on='姓名')
姓名 年龄 籍贯
0 张某 22 北京
1 李某 26 河北

(3)融合指标变量indicator,设置indicator的值为True,则融合结果中将增加列名为"_merge"的一列,其值代表不同含义:

取值说明
left_only融合的键仅在左侧的DataFrame中存在
right_only融合的键仅在右侧的DataFrame中存在
both融合的键在左右两侧的DataFrame中均存在
>>> pd.merge(left,right,on='姓名',how='outer',indicator=True)
姓名 年龄 籍贯 _merge
0 张某 22.0 北京 both
1 李某 26.0 河北 both
2 段某 24.0 NaN left_only
3 钱某 NaN 江苏 right_only

  indicator也可以接受字符串,生成的指标列的列名将由”_merge“变为该字符串:

>>> pd.merge(left,right,on='姓名',how='outer',indicator='indicator_column')
姓名 年龄 籍贯 indicator_column
0 张某 22.0 北京 both
1 李某 26.0 河北 both
2 段某 24.0 NaN left_only
3 钱某 NaN 江苏 right_only

(4)索引与列进行融合

注:left的索引和right中的某一列均为“姓名”,现在需要根据姓名进行融合

>>> left = pd.DataFrame({'年龄':[22,26,24]},index=['张某','李某','段某'])
>>> left
年龄
张某 22
李某 26
段某 24
>>> left.index.name='姓名'
>>> left
年龄
姓名
张某 22
李某 26
段某 24 >>> right = pd.DataFrame({'姓名':['张某','李某','钱某'],'籍贯':['北京','河北','江苏']})
>>> right
姓名 籍贯
0 张某 北京
1 李某 河北
2 钱某 江苏 #其中,left的索引和right中的某一列均为“姓名”,现在需要根据姓名进行融合
>>> pd.merge(left,right,how='outer',left_index=True,right_on='姓名')
年龄 姓名 籍贯
0 22.0 张某 北京
1 26.0 李某 河北
2 24.0 段某 NaN
2 NaN 钱某 江苏

(5)索引与索引的融合

left和right的索引均为‘姓名’,现进行融合

>>> left = pd.DataFrame({'年龄':[22,26,24]},index=['张某','李某','段某'])
>>> left.index.name='姓名'
>>> right = pd.DataFrame({'籍贯':['北京','河北','江苏']},index=['张某','李某','钱某'])
>>> right.index.name='姓名'
>>> left
年龄
姓名
张某 22
李某 26
段某 24
>>> right
籍贯
姓名
张某 北京
李某 河北
钱某 江苏 #left和right的索引均为‘姓名’,现进行融合
>>> pd.merge(left,right,how='outer',left_index=True,right_index=True)
年龄 籍贯
姓名
张某 22.0 北京
李某 26.0 河北
段某 24.0 NaN
钱某 NaN 江苏

二、join()

join()函数相对于pd.merge()而言是一种更为简便的实现方式

(1)对于索引与列的融合,需要设置on参数,来指明左键

注意:此时on的值应该是具体的列,而不是索引,索引此时的实体(即join左边的对象应该是包含“姓名”列的DataFrame)

>>> left
年龄
姓名
张某 22
李某 26
段某 24
>>> right
姓名 籍贯
0 张某 北京
1 李某 河北
2 钱某 江苏 #注意:此时on的值应该是具体的列,而不是索引,索引此时的实体(即join左边的对象应该是包含“姓名”列的DataFrame)
>>> right.join(left,on='姓名')
姓名 籍贯 年龄
0 张某 北京 22.0
1 李某 河北 26.0
2 钱某 江苏 NaN

(2)索引与索引的融合

相当于>>>pd.merge(left,right,how='outer',left_index=True,right_on='姓名')

>>> left
年龄
姓名
张某 22
李某 26
段某 24
>>> right
籍贯
姓名
张某 北京
李某 河北
钱某 江苏 >>> left.join(right,how='outer')
年龄 籍贯
姓名
张某 22.0 北京
李某 26.0 河北
段某 24.0 NaN
钱某 NaN 江苏

三、combine_first()

  由于数据融合是有一种常见的现象,即:需要根据一个DataFrame对象中的值为另一个DataFrame中的值做缺失值处理;

于是combine_first()应运而生,该方法实现了用参数对象中的数据为调用者对象的缺失数据“打补丁”,且会自动对其索引。

>>> left = pd.DataFrame({'姓名':['张某','李某','段某'],'年龄':[22,26,24]})
>>> right = pd.DataFrame({'姓名':['张某','李某','段某'],'年龄':[22,np.nan,np.nan],'籍贯':['北京','河北','江苏']}) #根据left中的值去填补right中的值
>>> right.combine_first(left)
姓名 年龄 籍贯
0 张某 22.0 北京
1 李某 26.0 河北
2 段某 24.0 江苏

  

05-28 08:11