- dataloader本质是一个可迭代对象,使用iter()访问,不能使用next()访问;
- 使用iter(dataloader)返回的是一个迭代器,然后可以使用next访问;
- 也可以使用`for inputs, labels in dataloaders`进行可迭代对象的访问;
- 一般我们实现一个datasets对象,传入到dataloader中;然后内部使用yeild返回每一次batch的数据;
① DataLoader本质上就是一个iterable(跟python的内置类型list等一样),并利用多进程来加速batch data的处理,使用yield来使用有限的内存
② Queue的特点 当队列里面没有数据时: queue.get() 会阻塞, 阻塞的时候,其它进程/线程如果有queue.put() 操作,本线程/进程会被通知,然后就可以 get 成功。
当数据满了: queue.put() 会阻塞 ③ DataLoader是一个高效,简洁,直观的网络输入数据结构,便于使用和扩展
输入数据PipeLine
pytorch 的数据加载到模型的操作顺序是这样的:
① 创建一个 Dataset 对象
② 创建一个 DataLoader 对象
③ 循环这个 DataLoader 对象,将img, label加载到模型中进行训练
dataset = MyDataset()
dataloader = DataLoader(dataset)
num_epoches = 100
for epoch in range(num_epoches):
for img, label in dataloader:
....
所以,作为直接对数据进入模型中的关键一步, DataLoader非常重要。
首先简单介绍一下DataLoader,它是PyTorch中数据读取的一个重要接口,该接口定义在dataloader.py中,只要是用PyTorch来训练模型基本都会用到该接口(除非用户重写…),该接口的目的:将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练。
官方对DataLoader的说明是:“数据加载由数据集和采样器组成,基于python的单、多进程的iterators来处理数据。”关于iterator和iterable的区别和概念请自行查阅,在实现中的差别就是iterators有__iter__和__next__方法,而iterable只有__iter__方法。
1.DataLoader
先介绍一下DataLoader(object)的参数:
dataset(Dataset): 传入的数据集
batch_size(int, optional): 每个batch有多少个样本
shuffle(bool, optional): 在每个epoch开始的时候,对数据进行重新排序
sampler(Sampler, optional): 自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
batch_sampler(Sampler, optional): 与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
num_workers (int, optional): 这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
collate_fn (callable, optional): 将一个list的sample组成一个mini-batch的函数
pin_memory (bool, optional): 如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中. drop_last (bool, optional): 如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了…
如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。 timeout(numeric, optional): 如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
worker_init_fn (callable, optional): 每个worker初始化函数 If not None, this will be called on each
worker subprocess with the worker id (an int in [0, num_workers - 1]) as
input, after seeding and before data loading. (default: None)
- 首先dataloader初始化时得到datasets的采样list
class DataLoader(object):
r"""
Data loader. Combines a dataset and a sampler, and provides
single- or multi-process iterators over the dataset. Arguments:
dataset (Dataset): dataset from which to load the data.
batch_size (int, optional): how many samples per batch to load
(default: 1).
shuffle (bool, optional): set to ``True`` to have the data reshuffled
at every epoch (default: False).
sampler (Sampler, optional): defines the strategy to draw samples from
the dataset. If specified, ``shuffle`` must be False.
batch_sampler (Sampler, optional): like sampler, but returns a batch of
indices at a time. Mutually exclusive with batch_size, shuffle,
sampler, and drop_last.
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means that the data will be loaded in the main process.
(default: 0)
collate_fn (callable, optional): merges a list of samples to form a mini-batch.
pin_memory (bool, optional): If ``True``, the data loader will copy tensors
into CUDA pinned memory before returning them.
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
if the dataset size is not divisible by the batch size. If ``False`` and
the size of dataset is not divisible by the batch size, then the last batch
will be smaller. (default: False)
timeout (numeric, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative. (default: 0)
worker_init_fn (callable, optional): If not None, this will be called on each
worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
input, after seeding and before data loading. (default: None) .. note:: By default, each worker will have its PyTorch seed set to
``base_seed + worker_id``, where ``base_seed`` is a long generated
by main process using its RNG. However, seeds for other libraies
may be duplicated upon initializing workers (w.g., NumPy), causing
each worker to return identical random numbers. (See
:ref:`dataloader-workers-random-seed` section in FAQ.) You may
use ``torch.initial_seed()`` to access the PyTorch seed for each
worker in :attr:`worker_init_fn`, and use it to set other seeds
before data loading. .. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an
unpicklable object, e.g., a lambda function.
""" __initialized = False def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
timeout=0, worker_init_fn=None):
self.dataset = dataset
self.batch_size = batch_size
self.num_workers = num_workers
self.collate_fn = collate_fn
self.pin_memory = pin_memory
self.drop_last = drop_last
self.timeout = timeout
self.worker_init_fn = worker_init_fn if timeout < 0:
raise ValueError('timeout option should be non-negative') if batch_sampler is not None:
if batch_size > 1 or shuffle or sampler is not None or drop_last:
raise ValueError('batch_sampler option is mutually exclusive '
'with batch_size, shuffle, sampler, and '
'drop_last')
self.batch_size = None
self.drop_last = None if sampler is not None and shuffle:
raise ValueError('sampler option is mutually exclusive with '
'shuffle') if self.num_workers < 0:
raise ValueError('num_workers option cannot be negative; '
'use num_workers=0 to disable multiprocessing.') if batch_sampler is None:
if sampler is None:
if shuffle:
sampler = RandomSampler(dataset) //将list打乱
else:
sampler = SequentialSampler(dataset)
batch_sampler = BatchSampler(sampler, batch_size, drop_last) self.sampler = sampler
self.batch_sampler = batch_sampler
self.__initialized = True def __setattr__(self, attr, val):
if self.__initialized and attr in ('batch_size', 'sampler', 'drop_last'):
raise ValueError('{} attribute should not be set after {} is '
'initialized'.format(attr, self.__class__.__name__)) super(DataLoader, self).__setattr__(attr, val) def __iter__(self):
return _DataLoaderIter(self) def __len__(self):
return len(self.batch_sampler)
其中:RandomSampler,BatchSampler已经得到了采用batch数据的index索引;yield batch机制已经在!!!
class RandomSampler(Sampler):
r"""Samples elements randomly, without replacement. Arguments:
data_source (Dataset): dataset to sample from
""" def __init__(self, data_source):
self.data_source = data_source def __iter__(self):
return iter(torch.randperm(len(self.data_source)).tolist()) def __len__(self):
return len(self.data_source)
class BatchSampler(Sampler):
r"""Wraps another sampler to yield a mini-batch of indices. Args:
sampler (Sampler): Base sampler.
batch_size (int): Size of mini-batch.
drop_last (bool): If ``True``, the sampler will drop the last batch if
its size would be less than ``batch_size`` Example:
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=True))
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
""" def __init__(self, sampler, batch_size, drop_last):
if not isinstance(sampler, Sampler):
raise ValueError("sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}"
.format(sampler))
if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \
batch_size <= 0:
raise ValueError("batch_size should be a positive integeral value, "
"but got batch_size={}".format(batch_size))
if not isinstance(drop_last, bool):
raise ValueError("drop_last should be a boolean value, but got "
"drop_last={}".format(drop_last))
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last def __iter__(self):
batch = []
for idx in self.sampler:
batch.append(idx)
if len(batch) == self.batch_size:
yield batch
batch = []
if len(batch) > 0 and not self.drop_last:
yield batch def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
- 其中 _DataLoaderIter(self)输入为一个dataloader对象;如果num_workers=0很好理解,num_workers!=0引入多线程机制,加速数据加载过程;
- 没有多线程时:batch = self.collate_fn([self.dataset[i] for i in indices])进行将index转化为data数据,返回(image,label);self.dataset[i]会调用datasets对象的
__getitem__()方法;
- 多线程下,会为每个线程创建一个索引队列index_queues;共享一个worker_result_queue数据队列!在_worker_loop方法中加载数据;
class _DataLoaderIter(object):
r"""Iterates once over the DataLoader's dataset, as specified by the sampler""" def __init__(self, loader):
self.dataset = loader.dataset
self.collate_fn = loader.collate_fn
self.batch_sampler = loader.batch_sampler
self.num_workers = loader.num_workers
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
self.timeout = loader.timeout
self.done_event = threading.Event() self.sample_iter = iter(self.batch_sampler) base_seed = torch.LongTensor(1).random_().item() if self.num_workers > 0:
self.worker_init_fn = loader.worker_init_fn
self.index_queues = [multiprocessing.Queue() for _ in range(self.num_workers)]
self.worker_queue_idx = 0
self.worker_result_queue = multiprocessing.SimpleQueue()
self.batches_outstanding = 0
self.worker_pids_set = False
self.shutdown = False
self.send_idx = 0
self.rcvd_idx = 0
self.reorder_dict = {} self.workers = [
multiprocessing.Process(
target=_worker_loop,
args=(self.dataset, self.index_queues[i],
self.worker_result_queue, self.collate_fn, base_seed + i,
self.worker_init_fn, i))
for i in range(self.num_workers)] if self.pin_memory or self.timeout > 0:
self.data_queue = queue.Queue()
if self.pin_memory:
maybe_device_id = torch.cuda.current_device()
else:
# do not initialize cuda context if not necessary
maybe_device_id = None
self.worker_manager_thread = threading.Thread(
target=_worker_manager_loop,
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
maybe_device_id))
self.worker_manager_thread.daemon = True
self.worker_manager_thread.start()
else:
self.data_queue = self.worker_result_queue for w in self.workers:
w.daemon = True # ensure that the worker exits on process exit
w.start() _update_worker_pids(id(self), tuple(w.pid for w in self.workers))
_set_SIGCHLD_handler()
self.worker_pids_set = True # prime the prefetch loop
for _ in range(2 * self.num_workers):
self._put_indices() def __len__(self):
return len(self.batch_sampler) def _get_batch(self):
if self.timeout > 0:
try:
return self.data_queue.get(timeout=self.timeout)
except queue.Empty:
raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
else:
return self.data_queue.get() def __next__(self):
if self.num_workers == 0: # same-process loading
indices = next(self.sample_iter) # may raise StopIteration
batch = self.collate_fn([self.dataset[i] for i in indices])
if self.pin_memory:
batch = pin_memory_batch(batch)
return batch # check if the next sample has already been generated
if self.rcvd_idx in self.reorder_dict:
batch = self.reorder_dict.pop(self.rcvd_idx)
return self._process_next_batch(batch) if self.batches_outstanding == 0:
self._shutdown_workers()
raise StopIteration while True:
assert (not self.shutdown and self.batches_outstanding > 0)
idx, batch = self._get_batch()
self.batches_outstanding -= 1
if idx != self.rcvd_idx:
# store out-of-order samples
self.reorder_dict[idx] = batch
continue
return self._process_next_batch(batch) next = __next__ # Python 2 compatibility def __iter__(self):
return self def _put_indices(self):
assert self.batches_outstanding < 2 * self.num_workers
indices = next(self.sample_iter, None)
if indices is None:
return
self.index_queues[self.worker_queue_idx].put((self.send_idx, indices))
self.worker_queue_idx = (self.worker_queue_idx + 1) % self.num_workers
self.batches_outstanding += 1
self.send_idx += 1 def _process_next_batch(self, batch):
self.rcvd_idx += 1
self._put_indices()
if isinstance(batch, ExceptionWrapper):
raise batch.exc_type(batch.exc_msg)
return batch
def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
global _use_shared_memory
_use_shared_memory = True # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
# module's handlers are executed after Python returns from C low-level
# handlers, likely when the same fatal signal happened again already.
# https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
_set_worker_signal_handlers() torch.set_num_threads(1)
random.seed(seed)
torch.manual_seed(seed) if init_fn is not None:
init_fn(worker_id) watchdog = ManagerWatchdog() while True:
try:
r = index_queue.get(timeout=MANAGER_STATUS_CHECK_INTERVAL)
except queue.Empty:
if watchdog.is_alive():
continue
else:
break
if r is None:
break
idx, batch_indices = r
try:
samples = collate_fn([dataset[i] for i in batch_indices])
except Exception:
data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
else:
data_queue.put((idx, samples))
del samples
- 需要对队列操作,缓存数据,使得加载提速!