本文介绍了以桌面屏幕为输入的实时 yolov5 检测的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个脚本可以抓取应用程序的屏幕截图并显示它.它在我的机器上运行得非常好,就像大约 60FPS 的视频一样.

I have a script that grabs an application's screenshot and displays it. it works quite nicely on my machine like a video with around 60FPS.

import os
os.getcwd()
from PIL import ImageGrab
import numpy as np
import cv2
import pyautogui
import win32gui
import time
from mss import mss
from PIL import Image
import tempfile
os.system('calc')
sct = mss()
xx=1
tstart = time.time()
while xx<10000:
    hwnd = win32gui.FindWindow(None, 'Calculator')
    left_x, top_y, right_x, bottom_y = win32gui.GetWindowRect(hwnd)
    #screen = np.array(ImageGrab.grab( bbox = (left_x, top_y, right_x, bottom_y ) ) )
    bbox = {'top': top_y, 'left': left_x, 'width': right_x-left_x, 'height':bottom_y-top_y }
    screen = sct.grab(bbox)
    scr = np.array(screen)

    cv2.imshow('window', scr)
    if cv2.waitKey(25) & 0xFF == ord('q'):
        cv2.destroyAllWindows()
        break
    xx+=1
cv2.destroyAllWindows()
tend = time.time()
print(xx/(tend-tstart))
print((tend-tstart))
os.system('taskkill /f /im calculator.exe')

我想在这个 scr 图像上运行 yolov5 的 detect.py 而不必一直保存到磁盘.我还想显示带有边界框的图像,并将它们的坐标保存在某处.

I would like to run yolov5's detect.py on this scr image without having to save to disk all the time. I'd also like to show the images with bounding boxes and have their coordinates saved somewhere.

我的python水平不够好,我尝试导入detect并添加参数,但它似乎不接受任何函数参数,只接受命令行参数.

My python level is not good enough, I tried importing detect and adding arguments, but it doesn't seem like it accepts any function parameter, only command line arguments.

也许我应该改写这条线,还是使用 opencv?

Perhaps I should adapt this line, or use opencv?

parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam

有什么想法吗?谢谢(这是 yolov5 的 detect.py 文件)

Any idea? thanks (this is the detect.py file for yolov5)

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random

from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \
    strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized


    def detect(save_img=False):
        source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
        webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
            ('rtsp://', 'rtmp://', 'http://'))

        # Directories
        save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

        # Initialize
        set_logging()
        device = select_device(opt.device)
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
        if half:
            model.half()  # to FP16

        # Second-stage classifier
        classify = False
        if classify:
            modelc = load_classifier(name='resnet101', n=2)  # initialize
            modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

        # Set Dataloader
        vid_path, vid_writer = None, None
        if webcam:
            view_img = True
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

        # Run inference
        t0 = time.time()
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once
        for path, img, im0s, vid_cap in dataset:
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=opt.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
            t2 = time_synchronized()

            # Apply Classifier
            if classify:
                pred = apply_classifier(pred, modelc, img, im0s)

            # Process detections
            for i, det in enumerate(pred):  # detections per image
                if webcam:  # batch_size >= 1
                    p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
                else:
                    p, s, im0 = Path(path), '', im0s

                save_path = str(save_dir / p.name)
                txt_path = str(save_dir / 'labels' / p.stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
                s += '%gx%g ' % img.shape[2:]  # print string
                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += '%g %ss, ' % (n, names[int(c)])  # add to string

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        if save_txt:  # Write to file
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                            line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                            with open(txt_path + '.txt', 'a') as f:
                                f.write(('%g ' * len(line)).rstrip() % line + '\n')

                        if save_img or view_img:  # Add bbox to image
                            label = '%s %.2f' % (names[int(cls)], conf)
                            plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

                # Print time (inference + NMS)
                print('%sDone. (%.3fs)' % (s, t2 - t1))

                # Stream results
                if view_img:
                    cv2.imshow(str(p), im0)
                    if cv2.waitKey(1) == ord('q'):  # q to quit
                        raise StopIteration

                # Save results (image with detections)
                if save_img:
                    if dataset.mode == 'images':
                        cv2.imwrite(save_path, im0)
                    else:
                        if vid_path != save_path:  # new video
                            vid_path = save_path
                            if isinstance(vid_writer, cv2.VideoWriter):
                                vid_writer.release()  # release previous video writer

                            fourcc = 'mp4v'  # output video codec
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                            vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                        vid_writer.write(im0)

        if save_txt or save_img:
            s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
            print(f"Results saved to {save_dir}{s}")

        print('Done. (%.3fs)' % (time.time() - t0))


    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
        parser.add_argument('--source', type=str, default='data/images', help='source')  # file/folder, 0 for webcam
        parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
        parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
        parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
        parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
        parser.add_argument('--view-img', action='store_true', help='display results')
        parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
        parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
        parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
        parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
        parser.add_argument('--augment', action='store_true', help='augmented inference')
        parser.add_argument('--update', action='store_true', help='update all models')
        parser.add_argument('--project', default='runs/detect', help='save results to project/name')
        parser.add_argument('--name', default='exp', help='save results to project/name')
        parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
        opt = parser.parse_args()
        print(opt)

        with torch.no_grad():
            if opt.update:  # update all models (to fix SourceChangeWarning)
                for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
                    detect()
                    strip_optimizer(opt.weights)
            else:
                detect()


编辑我已经在某处保存了权重,并且能够对保存在光盘上的图像运行detect,只是想跳过这一步以保持这些 FPS.Yolov5 存储库位于这里


EDIT I already have weights saved somewhere and am able to run detect on images that are saved on disc, just would like to skip this step to keep those FPS.The Yolov5 repo is here

推荐答案

对于 3rd 方项目中的独立推理或存储库,建议使用 PyTorch Hub 将模型导入 python 工作区.请参阅此处的 YOLOv5 PyTorch Hub 教程,特别是有关加载自定义模型的部分.https://github.com/ultralytics/yolov5#tutorials

For standalone inference in 3rd party projects or repos importing your model into the python workspace with PyTorch Hub is the recommended method. See YOLOv5 PyTorch Hub tutorial here, specifically the section on loading custom models.https://github.com/ultralytics/yolov5#tutorials

此示例加载自定义 20 类 VOC- 使用 PyTorch Hub 训练的 YOLOv5s 模型 'yolov5s_voc_best.pt'.

This example loads a custom 20-class VOC-trained YOLOv5s model 'yolov5s_voc_best.pt' with PyTorch Hub.

import torch

model = torch.hub.load('ultralytics/yolov5', 'custom', path_or_model='yolov5s_voc_best.pt')
model = model.autoshape()  # for PIL/cv2/np inputs and NMS

然后一旦模型加载:

from PIL import Image

# Images
img1 = Image.open('zidane.jpg')
img2 = Image.open('bus.jpg')
imgs = [img1, img2]  # batched list of images

# Inference
result = model(imgs, size=640)  # includes NMS
result.print()

这篇关于以桌面屏幕为输入的实时 yolov5 检测的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-15 10:21