当一个工程中有多个文件的时候,链接的本质就是要把多个不同的目标文件相互粘到一起。就想玩具积木一样整合成一个整体。为了使不同的目标文件之间能够相互粘合,这些目标文件之间必须要有固定的规则才行。比如目标文件B用到了目标文件A中的函数”foo”,那么我们就称目标文件A定义了函数foo,目标文件B引用了函数foo。每个函数和变量都有自己独特的名字,避免链接过程中不同变量和函数之间的混淆。在链接过程中,我们将函数和变量统称为符号。函数或者变量名就是符号名

每一个目标文件都会有一个相应的符号表,这个表里面记录了目标文件中所用到的所有符号。每个定义的符号有一个对应的值,叫做符号值,对于变量和函数来说, 符号值就是它们的地址。我们可以通过nm命令来查看目标文件中的符号结果。

root@zhf-maple:/home/zhf/c_prj# nm main.o

0000000000000000 T func1

0000000000000004 C global_init_var

U _GLOBAL_OFFSET_TABLE_

0000000000000000 D global_var

0000000000000024 T main

U printf

0000000000000000 b static_var2.2257

0000000000000004 d static_var.2256

符号表条目有如下结构(from elf.h):

typedef struct {

ELF32_Word st_name;

ELF32_Addr st_value;

ELF32_Word st_size;

unsigned char st_info;

unsigned char st_other;

Elf32_Half sth_shndx;

} Elf32_Sym;

ELF符号表域说明:

描述

st_name

符号串表索引. 串表用于保存符号名.

st_value

符号值:

符号的section索引为SHN_COMMON:符号对齐要求.

重定位文件:离section起始位置的偏移.

执行文件:符号的地址.

st_size

对象大小.

st_info >> 4

高4位定义符号的绑定[binding ]:

STB_LOCAL (0) symbol is local to the file

STB_GLOBAL (1) symbol is visible to all object files

STB_WEAK (2) symbol is global with lower precedence

st_info & 15

低4位定义符号的类型:

STT_NOTYPE (0)    无类型

STT_OBJECT (1)    数据对象(变量)

STT_FUNC (2)      函数

STT_SECTION (3)   section名

STT_FILE (4)      文件名

st_other

未使用.

st_shndx

定义符号sectiond的索引.特殊的section数包括:

SHN_UNDEF (0x0000)   未定义section

SHN_ABS (0xfff1)     绝对, 不可重定位符号

SHN_COMMON (0xfff2) 不分配, 外部变量

符号所在的段

宏定义名

说明

SHN_ABS

0xfff1

该符号包含了一个绝对值,比如表示文件名的符号

SHN_COMMON

0xfff2

表示该符号是一个"COMMON块"的符号

一般来说,未初始化的全局符号定义就是这种类型的。

SHN_UNDEF

0

该符号在本目标文件中被引用到,但是定义在其他目标文件中

我们还是通过readelf命令来查看下main.o文件中的符号。下面的结果和上面的表可以进行一一对应。

root@zhf-maple:/home/zhf/c_prj# readelf -s main.o

Symbol table '.symtab' contains 17 entries:

Num:    Value          Size Type    Bind   Vis      Ndx Name

0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND

1: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS main.c

2: 0000000000000000     0 SECTION LOCAL  DEFAULT    1

3: 0000000000000000     0 SECTION LOCAL  DEFAULT    3

4: 0000000000000000     0 SECTION LOCAL  DEFAULT    4

5: 0000000000000000     0 SECTION LOCAL  DEFAULT    5

6: 0000000000000004     4 OBJECT  LOCAL  DEFAULT    3 static_var.2256

7: 0000000000000000     4 OBJECT  LOCAL  DEFAULT    4 static_var2.2257

8: 0000000000000000     0 SECTION LOCAL  DEFAULT    7

9: 0000000000000000     0 SECTION LOCAL  DEFAULT    8

10: 0000000000000000     0 SECTION LOCAL  DEFAULT    6

11: 0000000000000000     4 OBJECT  GLOBAL DEFAULT    3 global_var

12: 0000000000000004     4 OBJECT  GLOBAL DEFAULT  COM global_init_var

13: 0000000000000000    36 FUNC    GLOBAL DEFAULT    1 func1

14: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT  UND _GLOBAL_OFFSET_TABLE_

15: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT  UND printf

16: 0000000000000024    40 FUNC    GLOBAL DEFAULT    1 main

弱符号与强符号

我们经常在编程中碰到一种情况叫符号重复定义。多个目标文件中含有相同名字全局符号的定义,那么这些目标文件链接的时候将会出现符号重复定义的错误。比如我们在目标文件A和目标文件B都定义了一个全局整形变量global,并将它们都初始化,那么链接器将A和B进行链接时会报错:

1 b.o:(.data+0x0): multiple definition of `global'

2 a.o:(.data+0x0): first defined here

这种符号的定义可以被称为强符号(Strong Symbol)。有些符号的定义可以被称为弱符号(Weak Symbol)。对于C语言来说,编译器默认函数和初始化了的全局变量为强符号,未初始化的全局变量为弱符号(C++并没有将未初始化的全局符号视为弱符号)。我们也可以通过GCC的"__attribute__((weak))"来定义任何一个强符号为弱符号。注意,强符号和弱符号都是针对定义来说的,不是针对符号的引用。比如我们有下面这段程序:

extern int ext;

int weak1;

int strong = 1;

int __attribute__((weak)) weak2 = 2;

int main()

{

return 0;

}

上面这段程序中,"weak"和"weak2"是弱符号,"strong"和"main"是强符号,而"ext"既非强符号也非弱符号,因为它是一个外部变量的引用。链接器会按照如下的规则处理被多次定义的全局符号:

规则1:不允许强符号被多次定义。

规则2:如果一个符号在某个目标文件中是强符号,在其他文件中都是弱符号,那么选择强符号。

规则3:如果一个符号在所有的目标文件中都是弱符号,那么选择其中占用空间最大的一个。

我们来看一个实际的例子:在下面的代码中f()没有被定义,因此会报错

int main()

{

f();

return 0;

}

g++  -o bin/Debug/linux_c obj/Debug/chapter8.o obj/Debug/main.o

obj/Debug/main.o:在函数‘main’中:

/home/zhf/codeblocks_prj/linux_c/main.c:15:对‘f’未定义的引用

如果将代码改成如下:

void __attribute__((weak)) f();

int main()

{

if (f){

f();

}

return 0;

}

居然编译通过了,甚至成功执行!让我们看看为什么?

首先声明了一个符号f(),属性为weak,但并不定义它,这样,链接器会将此未定义的weak symbol赋值为0,也就是说f()并没有真正被调用,试试看,去掉if条件,肯定core dump!

我们甚至可以定义强符号来override弱符号:

test.c中代码如下

#include<stdlib.h>

#include<stdio.h>

void __attribute__((weak)) f(){

printf("original f()\n");

}

int main(int argc,char *argv[]){

f();

return 0;

}

test1.c中的代码如下:

#include <stdio.h>

void f(void){

printf("override f()\n");

}

执行结果如下:

root@zhf-maple:/home/zhf/c_prj# gcc -c test.c test1.c

root@zhf-maple:/home/zhf/c_prj# gcc -o test test.o test1.o

root@zhf-maple:/home/zhf/c_prj# ./test

override f()

在Linux程序的设计中,如果一个程序被设计成可以支持单线程或多线程的模式,就可以通过弱引用的方法来判断当前的程序是链接到了单线程的Glibc库还是多线程的Glibc库(是否在编译时有-lpthread选项),从而执行单线程版本的程序或多线程版本的程序。我们可以在程序中定义一个pthread_create函数的弱引用,然后程序在运行时动态判断是否链接到pthread库从而决定执行多线程版本还是单线程版本:

#include <stdio.h>

#include <pthread.h>

int pthread_create( pthread_t*, const pthread_attr_t*,

void* (*)(void*), void*) __attribute__ ((weak));

int main()

{

if(pthread_create)

{

printf("This is multi-thread version!\n");

// run the multi-thread version

// main_multi_thread()

}

else

{

printf("This is single-thread version!\n");

// run the single-thread version

// main_single_thread()

}

}

执行结果如下:

$ gcc pthread.c -o pt

$ ./pt

This is single-thread version!

$ gcc pthread.c -lpthread -o pt

$ ./pt

This is multi-thread version!

05-18 10:19