问题描述
使用Gensim的Doc2Vec,我如何找到 Doctag
和 infer_vector()
之间的距离?
Using Gensim's Doc2Vec how would I find the distance between a Doctag
and an infer_vector()
?
非常感谢
推荐答案
Doctag
是doc-vector的键的内部名称. infer_vector()
操作的结果是一个向量.因此,正如您从字面上提出的那样,它们是不可比的.
Doctag
is the internal name for the keys to doc-vectors. The result of an infer_vector()
operation is a vector. So as you've literally asked, these aren't comparable.
您可以通过在训练期间通过 model.docvecs [doctag]
提供的doc-tag密钥,向模型询问已知的doc-vector.这可以与 infer_vector()
调用的结果相提并论.
You could ask a model for a known doc-vector, by its doc-tag key that was supplied during training, via model.docvecs[doctag]
. That would be comparable to the result of an infer_vector()
call.
手头有两个向量,您可以使用 scipy
例程来计算各种距离.例如:
With two vectors in hand, you can use scipy
routines to calculate various kinds of distance. For example:
import scipy.spatial.distance.cosine as cosine_distance
vec_by_doctag = model.docvecs["doc0007"]
vec_by_inference = model.infer_vector(['a', 'cat', 'was', 'in', 'a', 'hat'])
dist = cosine_distance(vec_by_doctag, vec_by_inference)
您还可以查看gensim的 Doc2VecKeyedVectors
如何在模型中通过其 similarity()
已知(通过其doctag键名)已知的矢量之间的相似度/距离.和 distance()
函数,位于:
You can also look at how gensim's Doc2VecKeyedVectors
does similarity/distance between vectors that are known (by their doctag key names) inside a model, in its similarity()
and distance()
functions, at:
这篇关于使用Gensim Doc2Vec寻找'Doctag'和'infer_vector'之间的距离?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!