莫比乌斯反演也是反演定理的一种
既然我们已经学了二项式反演定理
那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用
莫比乌斯反演长下面这个样子(=・ω・=)
d|n,表示n能够整除d,也就是d是n的所有因子
μ(x)是莫比乌斯函数,它是这样计算的
μ(1) = 1
x = p1 * p2 * p3 ……*pk(x由k个不同的质数组成)则μ(x) = (-1)^k
其他情况,μ (x) = 0
比如
30 = 2 * 3 * 5
μ(30) = (-1)^3
4 = 2 * 2
μ(4) = 0
对于μ(d)函数,它有如下的常见性质:
(1)对任意正整数n有
(2)对任意正整数n有
求μ的函数的方法很多
这里提供一种线筛的预处理(复杂度O(n)哟~~~)
#include<cstdio>
const int N = 1e6 + ;
int mu[N], vis[N], prime[N];
int tot;//用来记录prime的个数
void init(){
mu[] = ;
for(int i = ; i < N; i ++){
if(!vis[i]){
prime[tot ++] = i;
mu[i] = -;
}
for(int j = ; j < tot && i * prime[j] < N; j ++){
vis[i * prime[j]] = ;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{
mu[i * prime[j]] = ;
break;
}
}
}
}
int main(){
init();
}
上次,有人问我μ为啥不是miu是mu
这。。。当然都可以啦,μ的英文就是mu,miu是读音看你习惯
∑(っ °Д °;)っ为了证明我是对的,我特意百度了希腊字母读音及科学方面应用
大写 | 小写 | 英文读音 | 国际音标 | 意义 |
Α | α | alpha | /ˈælfə/ | 角度,系数,角加速度 |
Β | β | beta | /'beitə/ | 磁通系数,角度,系数 |
Γ | γ | gamma | /'gæmə/ | 电导系数,角度,比热容比 |
Δ | δ | delta | /'deltə/ | 变化量,屈光度,一元二次方程中的判别式 |
Ε | ε | epsilon | /ep'silon/ | 对数之基数,介电常数 |
Ζ | ζ | zeta | /'zi:tə/ | 系数,方位角,阻抗,相对粘度 |
Η | η | eta | /'i:tə/ | 迟滞系数,效率 |
Θ | θ | theta | /'θi:tə/ | 温度,角度 |
Ι | ι ℩ | iota | /ai'oute/ | 微小,一点 |
Κ | κ | kappa | /kæpə/ | 介质常数,绝热指数 |
∧ | λ | lambda | /'læmdə/ | 波长,体积,导热系数 |
Μ | μ | mu | /mju:/ | 磁导系数,微,动摩擦系(因)数,流体动力粘度 |
Ν | ν | nu | /nju:/ | 磁阻系数,流体运动粘度,光子频率 |
Ξ | ξ | xi | /ksi/ | 随机数,(小)区间内的一个未知特定值 |
Ο | ο | omicron | /oumaik'rən/ | 高阶无穷小函数 |
∏ | π | pi | /pai/ | 圆周率,π(n)表示不大于n的质数个数 |
Ρ | ρ | rho | /rou/ | 电阻系数,柱坐标和极坐标中的极径,密度 |
∑ | σ ς | sigma | /'sigmə/ | 总和,表面密度,跨导,正应力 |
Τ | τ | tau | /tau/ | 时间常数,切应力 |
Υ | υ | upsilon | /ju:p'silən/ | 位移 |
Φ | φ | phi | /fai/ | 磁通,角,透镜焦度,热流量 |
Χ | χ | chi | /kai/ | 统计学中有卡方(χ^2)分布 |
Ψ | ψ | psi | /psai/ | 角速,介质电通量 |
Ω | ω | omega | /'oumigə/ | 欧姆,角速度,交流电的电角度 |
其实莫比乌斯有两种描述
莫比乌斯第一种描述,一般是这种
莫比乌斯第二种描述,这种也可以而且有些题这种更好
来做题吧
hdu 1695
http://acm.hdu.edu.cn/showproblem.php?pid=1695
(这题就是容斥那一章的,我就把下面的题意照搬过来了,还记得题目的就跳过题目吧)
题意:给你5个数a,b,c,d,k
在a~b中选一个x, c~d中选一个y,满足gcd(x,y) = k , 求(x,y) 的对数
a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000
在题目描述的最后一行有一句话,多组里面所有的a和c都是1(这题目不是坑爹吗(╯‵□′)╯︵┻━┻那输入a和c有什么用)
然后题目变成
在1~b中选一个x, 1~d中选一个y,满足gcd(x,y) = k , 求(x,y) 的对数 。。。(无语中。。。)
前面思路一样
先把问题就转化为求1~a区间 和 1~b区间,gcd(x,y) = 1对数的问题
设f(d)为满足gcd(x,y)=d的x,y的对数
我们根据莫比乌斯第二描述来做
那F(1) = f(1) + f(2) + f(3) + ....
F(2) = f(2) + f(4) + f(6) +.....
我们可以看出F(d)就是满足gcd(x,y)为d的倍数的x,y的对数
那F(d)的公式就容易求了
F(d) = (a/d) * (b/d)
(在1~a中,有a/d个数是d的倍数,在1~b中,有b/d个数是d的倍数,这些数不管怎么选择,构成的gcd(x,y)都是d的倍数)
因为
F(1) = f(1) + f(2) + f(3) + ....
所以
f(1) = μ(1)*F(1) + μ(2)*F(2) + μ(3)*F(3) + ...
AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 1e6 + ;
int mu[N], vis[N], prime[N];
int tot;//用来记录prime的个数
void init(){
mu[] = ;
for(int i = ; i < N; i ++){
if(!vis[i]){
prime[tot ++] = i;
mu[i] = -;
}
for(int j = ; j < tot && i * prime[j] < N; j ++){
vis[i * prime[j]] = ;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{
mu[i * prime[j]] = ;
break;
}
}
}
}
LL Mobius(int a, int b){
LL ret = ;
for(int i = ; i <= a; i ++){//因为公式中有a/i,所以for到a就可以了
ret += 1ll * mu[i] * (a / i) * (b / i);
}
//我们现在求完了总对数,但是题目要求的类似(5,7)和(7,5)算一种
//所以接下来我们开始去重
LL temp = ;
for(int i = ; i <= a; i ++){
temp += 1ll * mu[i] * (a / i) * (a / i);
}
return ret - temp / ;
//比如a=5,b=7那么(4,6)这样子的区间不可能有重复的(6,4)
//所以重复的部分只在1~a中,所以最后减去一半的重复区间就好了
}
int main(){
init();
int T, a, b, c, d, k;
scanf("%d", &T);
for(int cas = ; cas <= T; cas ++){
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if(k == ){
printf("Case %d: 0\n", cas);
continue;
}
b /= k; d /= k;
if(b > d) swap(b, d);
printf("Case %d: %I64d\n", cas, Mobius(b, d));
}
}
/////////////////此处施工中//////////////////
暂时弃坑。。。。
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=94200#overview
峰神挂的莫比乌斯反演章节,有兴趣自己去做做,不会的去百度。。。。