既然已经学傻了,这个题当然是上反演辣。

  对于求积的式子,考虑把[gcd=1]放到指数上。一通套路后可以得到∏D∏d∏i∏j (ijd)(D=1~n,d|D,i,j=1~n/D)。

  冷静分析一下,由μ*1=e,后面一串ij相关的式子仅当D=1时有贡献。这一部分就非常好算了。而d对某个D的贡献,容易发现是d。设f(D)=∏d(d|D),这个式子是可以线性筛的。(事实上从莫比乌斯函数的性质上看好像也很可以求,然而已经不会了)筛完之后就可以愉快的整除分块了。

  于是我们最后得到了一个不需要莫比乌斯函数的式子。复杂度O(n+t√nlogn)。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 19260817
#define N 1000010
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int T,n,fac[N],g[N],h[N],prime[N],cnt;
bool flag[N];
int ksm(int a,int k)
{
if (k<) k=1ll*(P-)*(-k)%(P-);
k%=(P-);
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%lld\n";
#else
const char LL[]="%I64d\n";
#endif
T=read();
fac[]=;for (int i=;i<=;i++) fac[i]=1ll*fac[i-]*i%P;
for (int i=;i<=;i++) fac[i]=ksm(fac[i],i);
flag[]=;g[]=g[]=;
for (int i=;i<=N-;i++)
{
if (!flag[i]) prime[++cnt]=i,g[i]=ksm(i,-);
for (int j=;j<=cnt&&prime[j]*i<=N-;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {g[prime[j]*i]=g[i];break; }
g[prime[j]*i]=;
}
}
for (int i=;i<=N-;i++) g[i]=1ll*g[i]*g[i-]%P;
while (T--)
{
int n=read(),ans=1ll*fac[n]*fac[n]%P;
for (int i=;i<=n;i++)
{
int t=n/(n/i);
ans=1ll*ans*ksm(1ll*g[t]*ksm(g[i-],-)%P,2ll*(n/i)*(n/i)%(P-))%P;
i=t;
}
cout<<ans<<endl;
}
return ;
}
05-11 09:31