问题描述
复发时间复杂度T(n)= 2T(n-1)+ 4?
我有严重的问题。
我试过:
T(n)= 2T(n-1)+4 = 2(2T(n-2)+4)+4 = 4T(n-2)+12 = 4(2T(n-3)+4)+4 = 8T(n-3)+20 = 8(2T(n-4)+4)+4 =
16T(n-4)+36 = ...
T(n)= 2 ^ kT(nk)+(4 + 2 ^(k + 1) p>
所以看起来像T(n)= 2 ^ n +(4 + 2 ^(n + 1)),但似乎不对...请帮助: (
您的计算错误,我假设这里 T(0)= 0
T(n)= 2T(n-1)+ 4
= 2T(n-2)+4)+ 4 = 4T(n-2)+ 12
= 4(2T(n-3)+4)+12 = 8T(n-3)+28
= 8(2T(n-4)+4)+28 = 16T(n-4)+ 60
= 16(2T(n-5)+4)+60 = 32T(n-5)+ 124
= 32(2T(n-6)+4)+124 = 64T(n-6)+252
然后现在看看序列
0,4,12,28,60,124,252,508,1020, 2044,...
添加4到所有这些数字是非常诱人的:
4,8,16,32,64,128,256,512 ,1024,2048,...
你认识吗?所以猜测显然是
T(n)= 2 ^(n + 2) - 4
现在,您可以很容易地通过归纳来证明它。
顺便说一下如果 T(0)
不等于 0
公式是
T(n)= 2 ^(n + 2) - 4 + T(0)* 2 ^ n
What is the time complexity of the recurrence T(n) = 2T(n-1) + 4 ?
I'm having serious problems with this.I tried:
T(n) = 2T(n-1)+4 = 2(2T(n-2)+4)+4 = 4T(n-2)+12= 4(2T(n-3)+4)+4 = 8T(n-3)+20 = 8(2T(n-4)+4)+4 = 16T(n-4)+36 =…
T(n) = 2^kT(n-k) + (4+2^(k+1))
so it looks like T(n) = 2^n + (4+2^(n+1)) but it doesn't seem right... please help :(
Your computation are wrong. I'm assuming here that T(0)=0
T(n) = 2T(n-1)+ 4
= 2(2T(n-2)+4)+ 4 = 4T(n-2)+ 12
= 4(2T(n-3)+4)+ 12 = 8T(n-3)+ 28
= 8(2T(n-4)+4)+ 28 = 16T(n-4)+ 60
= 16(2T(n-5)+4)+ 60 = 32T(n-5)+124
= 32(2T(n-6)+4)+124 = 64T(n-6)+252
Then now: look at the sequence
0,4,12,28,60,124,252,508,1020,2044,...
It is very tempting to add 4 to all these numbers:
4,8,16,32,64,128,256,512,1024,2048,...
Do you recognize it ? So the guess is clearly
T(n) = 2^(n+2) - 4
Now, you can easily prove it by induction.
By the way if T(0)
is not equal to 0
the formula is
T(n) = 2^(n+2) - 4 + T(0)*2^n
这篇关于复发时间复杂度T(n)= 2T(n-1)+ 4的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!