问题描述
我正在尝试使用 otsu 进行多阈值化.我目前使用的方法实际上是通过最大化类间方差,我设法获得了与 OpenCV 库给出的相同阈值.但是,这只是通过运行一次 otsu 方法.
关于如何进行多级阈值或递归阈值的文档相当有限.获得原始大津值后我该怎么办?希望得到一些提示,我一直在玩代码,添加一个外部 for 循环,但是对于任何给定图像,计算的下一个值始终是 254:(
如果需要,我的代码是:
//先计算直方图cv::Mat imageh;//将图像编辑为灰度以用于直方图//imageh=图像;//删除并取消下面的注释;cv::cvtColor(图像, imageh, CV_BGR2GRAY);int histSize[1] = {256};//箱数浮动 hranges[2] = {0.0, 256.0};//最小andax像素值const float* 范围[1] = {hranges};整数通道[1] = {0};//只使用了 1 个通道cv::MatND 历史记录;//计算直方图calcHist(&imageh, 1, 通道, cv::Mat(), hist, 1, histSize, 范围);IplImage* im = new IplImage(imageh);//将图像赋值给一个IplImage指针IplImage* finalIm = cvCreateImage(cvSize(im->width, im->height), IPL_DEPTH_8U, 1);双 otsuThreshold= cvThreshold(im, finalIm, 0, 255, cv::THRESH_BINARY | cv::THRESH_OTSU);cout<(t));浮动 mB = sumB/wB;//平均背景浮动 mF = (sum - sumB)/wF;//平均前景//计算类之间的差异float varBetween = (float)wB * (float)wF * (mB - mF) * (mB - mF);//检查是否找到新的最大值if (varBetween > varMax) {varMax = varBetween;阈值 = t;}}cout<
将 Otsu 的阈值化方法扩展到多级阈值化,类间方差方程变为:
请查看 Deng-Yuan Huang、Ta-Wei Lin、Wu-Chih Hu、Automatic基于两阶段Otsu法的多级阈值聚类通过谷估计确定,诠释.创新杂志计算,2011,7:5631-5644 了解更多信息.
大津的原论文:Nobuyuki Otsu, A Threshold Selection Method来自灰度直方图、IEEE Transactions on Systems、Man 和Cybernetics, 1979, 9:62-66" 还简要提到了对多阈值.
https://engineering.purdue.edu/kak/computervision/ECE661.08/OTSU_paper.pdf
希望这会有所帮助.
I am trying to carry out multi-thresholding with otsu. The method I am using currently is actually via maximising the between class variance, I have managed to get the same threshold value given as that by the OpenCV library. However, that is just via running otsu method once.
Documentation on how to do multi-level thresholding or rather recursive thresholding is rather limited. Where do I do after obtaining the original otsu's value? Would appreciate some hints, I been playing around with the code, adding one external for loop, but the next value calculated is always 254 for any given image:(
My code if need be:
//compute histogram first
cv::Mat imageh; //image edited to grayscale for histogram purpose
//imageh=image; //to delete and uncomment below;
cv::cvtColor(image, imageh, CV_BGR2GRAY);
int histSize[1] = {256}; // number of bins
float hranges[2] = {0.0, 256.0}; // min andax pixel value
const float* ranges[1] = {hranges};
int channels[1] = {0}; // only 1 channel used
cv::MatND hist;
// Compute histogram
calcHist(&imageh, 1, channels, cv::Mat(), hist, 1, histSize, ranges);
IplImage* im = new IplImage(imageh);//assign the image to an IplImage pointer
IplImage* finalIm = cvCreateImage(cvSize(im->width, im->height), IPL_DEPTH_8U, 1);
double otsuThreshold= cvThreshold(im, finalIm, 0, 255, cv::THRESH_BINARY | cv::THRESH_OTSU );
cout<<"opencv otsu gives "<<otsuThreshold<<endl;
int totalNumberOfPixels= imageh.total();
cout<<"total number of Pixels is " <<totalNumberOfPixels<< endl;
float sum = 0;
for (int t=0 ; t<256 ; t++)
{
sum += t * hist.at<float>(t);
}
cout<<"sum is "<<sum<<endl;
float sumB = 0; //sum of background
int wB = 0; // weight of background
int wF = 0; //weight of foreground
float varMax = 0;
int threshold = 0;
//run an iteration to find the maximum value of the between class variance(as between class variance shld be maximise)
for (int t=0 ; t<256 ; t++)
{
wB += hist.at<float>(t); // Weight Background
if (wB == 0) continue;
wF = totalNumberOfPixels - wB; // Weight Foreground
if (wF == 0) break;
sumB += (float) (t * hist.at<float>(t));
float mB = sumB / wB; // Mean Background
float mF = (sum - sumB) / wF; // Mean Foreground
// Calculate Between Class Variance
float varBetween = (float)wB * (float)wF * (mB - mF) * (mB - mF);
// Check if new maximum found
if (varBetween > varMax) {
varMax = varBetween;
threshold = t;
}
}
cout<<"threshold value is: "<<threshold;
To extend Otsu's thresholding method to multi-level thresholding the between class variance equation becomes:
Here is my C# implementation of Otsu Multi for 2 thresholds:
/* Otsu (1979) - multi */
Tuple < int, int > otsuMulti(object sender, EventArgs e) {
//image histogram
int[] histogram = new int[256];
//total number of pixels
int N = 0;
//accumulate image histogram and total number of pixels
foreach(int intensity in image.Data) {
if (intensity != 0) {
histogram[intensity] += 1;
N++;
}
}
double W0K, W1K, W2K, M0, M1, M2, currVarB, optimalThresh1, optimalThresh2, maxBetweenVar, M0K, M1K, M2K, MT;
optimalThresh1 = 0;
optimalThresh2 = 0;
W0K = 0;
W1K = 0;
M0K = 0;
M1K = 0;
MT = 0;
maxBetweenVar = 0;
for (int k = 0; k <= 255; k++) {
MT += k * (histogram[k] / (double) N);
}
for (int t1 = 0; t1 <= 255; t1++) {
W0K += histogram[t1] / (double) N; //Pi
M0K += t1 * (histogram[t1] / (double) N); //i * Pi
M0 = M0K / W0K; //(i * Pi)/Pi
W1K = 0;
M1K = 0;
for (int t2 = t1 + 1; t2 <= 255; t2++) {
W1K += histogram[t2] / (double) N; //Pi
M1K += t2 * (histogram[t2] / (double) N); //i * Pi
M1 = M1K / W1K; //(i * Pi)/Pi
W2K = 1 - (W0K + W1K);
M2K = MT - (M0K + M1K);
if (W2K <= 0) break;
M2 = M2K / W2K;
currVarB = W0K * (M0 - MT) * (M0 - MT) + W1K * (M1 - MT) * (M1 - MT) + W2K * (M2 - MT) * (M2 - MT);
if (maxBetweenVar < currVarB) {
maxBetweenVar = currVarB;
optimalThresh1 = t1;
optimalThresh2 = t2;
}
}
}
return new Tuple(optimalThresh1, optimalThresh2);
}
And this is the result I got by thresholding an image scan of soil with the above code:
(T1 = 110, T2 = 147).
Hope this helps.
这篇关于带有openCV的多otsu(多阈值)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!