本文介绍了对数据框执行卡方检验的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有这个data.frame:
I have this data.frame:
df <- data.frame(xy = c("x", "y"), V1 = c(3, 0), V2 = c(0, 0), V3 = c(5, 0), V4 = c(5, 2))
df
xy V1 V2 V3 V4
1 x 3 0 5 5
2 y 0 0 0 2
我想知道,如果 x
或 y
更多地与 V1
, V2
, V3
或 V4
。为了测试这个,我可以使用卡方。
I want to know if x
or y
is more associated with any of V1
, V2
, V3
or V4
. To test this, I can use a chi-squared.
这是我试过的,没有哪个工作:
This is what I've tried, none of which work:
chisq.test(df)
chisq.test(as.matrix(df))
chisq.test(as.table(df))
如何在 df $ c上运行卡方检验$ c>?
推荐答案
以下两项工作(您需要删除第一列):
Both of following work (you need to remove first column):
chisq.test(df[,-1])
chisq.test(as.matrix(df[,-1]))
> chisq.test(df[,-1])
Pearson's Chi-squared test
data: df[, -1]
X-squared = NaN, df = 3, p-value = NA
Warning message:
In chisq.test(df[, -1]) : Chi-squared approximation may be incorrect
>
>
>
>
>
> chisq.test(as.matrix(df[,-1]))
Pearson's Chi-squared test
data: as.matrix(df[, -1])
X-squared = NaN, df = 3, p-value = NA
Warning message:
In chisq.test(as.matrix(df[, -1])) :
Chi-squared approximation may be incorrect
>
这篇关于对数据框执行卡方检验的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!