逐个去除限制。第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数……

  然后是限制二。同样可以容斥,即恰好选n行的方案数=至多选n行的方案数-至多选n-1行的方案数+至多选n-2行的方案数……

  限制三同理。即容斥套容斥套容斥。复杂度O(nmc)。

  注意到容斥式子和二项式定理有千丝万缕的联系,用二项式定理去掉一维变成O(nclogm)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 410
#define P 1000000007
int n,m,c,ans,C[N][N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4487.in","r",stdin);
freopen("bzoj4487.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),c=read();
C[][]=;
for (int i=;i<=;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j]+C[i-][j-])%P;
}
for (int i=c;i>=;i--)
for (int j=n;j>=;j--)
if ((c-i+n-j+m&)^(m&)) inc(ans,P-1ll*C[c][i]*C[n][j]%P*ksm(ksm(i+,j)-,m)%P);
else inc(ans,1ll*C[c][i]*C[n][j]%P*ksm(ksm(i+,j)-,m)%P);
cout<<ans;
return ;
}
05-26 12:43