Common Substrings

\[Time Limit: 5000 ms\quad Memory Limit: 65536 kB
\]

题意

给出两个字符串,要求两个字符串公共子串长度不小于 \(k\) 的对数。

思路

对 \(S\) 串构建后缀自动机,然后利用 \(v \in u'son\),\(dp[u] += dp[v]\) 求出每个节点的 \(endpos\) 大小。

用 \(T\) 串在自动机上跑最长公共连续子串,假设现在在 \(T\) 串上匹配的最长部分是 \(t\),停在自动机上的 \(p\) 节点。为了防止重复计数,我们现在要求就是的 \(t\) 的所有后缀在 \(S\) 上有多少匹配的位置。

这个计算方法就是 \(\sum dp[i]*(LCS-max(k-1,father.len))\)。在 \(p\) 节点时,\(LCS\) 为我们每次更新的答案 \(res\),接下来往 \(p\) 的 \(father\) 更新时,\(LCS\) 就是 \(i.len\)

比如样例中的

\(xx\\
xx\)

第二个串匹配时,第一次匹配到 \(x\)_ 。第二次匹配到 \(xx\),然后我们继续更新 _\(x\) 的答案。

但是如果每次都暴力向上更新,是会超时的,我们发现只有每个刚刚匹配到的 \(p\) 节点的答案与 \(res\) 有关,而 \(p\) 向上更新的节点的贡献都是固定的,所以我们可以先求出全部的 \(p\) 节点的贡献,然后用 \(cnt[i]\) 表示 \(i\) 节点被底下更新了几次,倒着计算,压缩更新次数。

#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std; int n, m, k;
int cas, tol, T; struct Sam {
struct Node {
int next[55];
int fa, len;
void init() {
mes(next, 0);
fa = len = 0;
}
} node[maxn];
ll dp[maxn], cnt[maxn];
int sz, last;
void init() {
last = sz = 1;
mes(dp, 0);
node[sz].init();
}
void insert(int k) {
int p = last, np = last = ++sz;
dp[np] = 1;
node[np].init();
node[np].len = node[p].len+1;
for(; p&&!node[p].next[k]; p=node[p].fa)
node[p].next[k] = np;
if(p == 0) {
node[np].fa = 1;
} else {
int q = node[p].next[k];
if(node[q].len == node[p].len+1) {
node[np].fa = q;
} else {
int nq = ++sz;
node[nq] = node[q];
node[nq].len = node[p].len+1;
node[np].fa = node[q].fa = nq;
for(; p&&node[p].next[k]==q; p=node[p].fa)
node[p].next[k] = nq;
}
}
}
int tax[maxn], gid[maxn];
void handle() {
for(int i=0; i<=sz; i++) tax[i] = cnt[i] = 0;
for(int i=1; i<=sz; i++) tax[node[i].len]++;
for(int i=1; i<=sz; i++) tax[i] += tax[i-1];
for(int i=1; i<=sz; i++) gid[tax[node[i].len]--] = i;
for(int i=sz; i>=1; i--) {
int u = gid[i];
int fa = node[u].fa;
dp[fa] += dp[u];
}
}
void solve(char *s, int k) {
int len = strlen(s+1);
int p = 1;
ll res = 0, ans = 0;
for(int i=1; i<=len; i++) {
int nst;
if('a'<=s[i] && s[i]<='z') nst = s[i]-'a'+1;
else nst = s[i]-'A'+1+26;
while(p && !node[p].next[nst]) {
p = node[p].fa;
res = node[p].len;
}
if(p == 0) {
p = 1;
res = 0;
} else {
p = node[p].next[nst];
res++;
}
if(res >= k) {
ans += dp[p]*(res - max(node[node[p].fa].len, k-1));
if(node[node[p].fa].len >= k)
cnt[node[p].fa]++;
}
}
for(int i=sz; i>=1; i--) {
int u = gid[i];
ans += dp[u]*cnt[u]*(node[u].len - max(node[node[u].fa].len, k-1));
if(node[node[u].fa].len >= k)
cnt[node[u].fa] += cnt[u];
}
printf("%lld\n", ans);
}
} sam;
char s[maxn], t[maxn]; int main() {
while(scanf("%d", &k), k) {
sam.init();
scanf("%s%s", s+1, t+1);
int slen = strlen(s+1);
for(int i=1; i<=slen; i++) {
int nst;
if('a'<=s[i] && s[i]<='z') nst = s[i]-'a'+1;
else nst = s[i]-'A'+1+26;
sam.insert(nst);
}
sam.handle();
sam.solve(t, k);
}
return 0;
}
05-21 23:33