本文介绍了重置列索引 pandas ?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
>>>data = data.drop(data.columns[[1,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]],axis=1)>>>数据 = data.drop(data.index[[0,1]],axis = 0)>>>打印(数据.头())0 2 3 4 202 500292014600 .00 .00 .00 NaN3 500292014600 100.00 .00 .00 NaN4 500292014600 11202.00 .00 .00 NaN>>>数据 = data.reset_index(drop = True)>>>打印(数据.头())0 2 3 4 200 500292014600 .00 .00 .00 NaN1 500292014600 100.00 .00 .00 NaN2 500292014600 11202.00 .00 .00 NaN为什么当我使用 df.reset_index 时,我的列的索引没有被重置?如何将此索引重置为 0、1、2、3、4?
解决方案
尝试替换列名:
>>>将 numpy 导入为 np>>>将熊猫导入为 pd>>>my_data = [[500292014600, .00, .00, .00, np.nan],[500292014600, 100.00, .00, .00, np.nan],[500292014600, 11202.00, .00, .00, np.nan]]>>>df = pd.DataFrame(my_data, columns=[0,2,3,4,20])>>>df0 2 3 4 200 500292014600 0.0 0.0 0.0 NaN1 500292014600 100.0 0.0 0.0 NaN2 500292014600 11202.0 0.0 0.0 NaN>>>df.columns = 范围(df.shape[1])>>>df0 1 2 3 40 500292014600 0.0 0.0 0.0 NaN1 500292014600 100.0 0.0 0.0 NaN2 500292014600 11202.0 0.0 0.0 NaN>>> data = data.drop(data.columns[[1,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]], axis=1)
>>> data = data.drop(data.index[[0,1]],axis = 0)
>>> print(data.head())
0 2 3 4 20
2 500292014600 .00 .00 .00 NaN
3 500292014600 100.00 .00 .00 NaN
4 500292014600 11202.00 .00 .00 NaN
>>> data = data.reset_index(drop = True)
>>> print(data.head())
0 2 3 4 20
0 500292014600 .00 .00 .00 NaN
1 500292014600 100.00 .00 .00 NaN
2 500292014600 11202.00 .00 .00 NaN
How come when i use df.reset_index the index of my columns is not reset?How do I go about resetting this index to 0,1,2,3,4?
解决方案
Try replacing the column names:
>>> import numpy as np
>>> import pandas as pd
>>> my_data = [[500292014600, .00, .00, .00, np.nan],
[500292014600, 100.00, .00, .00, np.nan],
[500292014600, 11202.00, .00, .00, np.nan]]
>>> df = pd.DataFrame(my_data, columns=[0,2,3,4,20])
>>> df
0 2 3 4 20
0 500292014600 0.0 0.0 0.0 NaN
1 500292014600 100.0 0.0 0.0 NaN
2 500292014600 11202.0 0.0 0.0 NaN
>>> df.columns = range(df.shape[1])
>>> df
0 1 2 3 4
0 500292014600 0.0 0.0 0.0 NaN
1 500292014600 100.0 0.0 0.0 NaN
2 500292014600 11202.0 0.0 0.0 NaN
这篇关于重置列索引 pandas ?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!