本文介绍了如何从SyntaxNet获取依赖项解析输出的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

如何从SyntaxNet( https: //github.com/tensorflow/models/tree/master/syntaxnet )?我看到了对依赖关系解析的描述...对如何训练模型的描述,但没有关于如何获得依赖关系解析输出的描述.

How do you get a dependency parse (not syntax tree) output from SyntaxNet (https://github.com/tensorflow/models/tree/master/syntaxnet) ? I see a description of dependency parsing...a description of how to train a model, but not how to get dependency parse output.

SyntaxNet(特别是Parsey McParseface模型)是否甚至可以立即进行依赖项解析?

Does SyntaxNet (Specifically the Parsey McParseface model) even do dependency parsing out of the box?

推荐答案

--arg_prefix brain_parser传递给parser_eval.py应该可以解决问题.但这需要将标记的输出作为输入.

Passing --arg_prefix brain_parser to the parser_eval.py should do the trick. But this requires the tagged output to be fed as input.

这是一个示例,其中第一遍标记单词,第二遍解析依赖性:

Here's an example where the first pass tags the words and the second pass resolves dependencies:

echo 'The quick brown fox ran over the lazy dog.' | bazel-bin/syntaxnet/parser_eval \
--input stdin \
--output stdout-conll \
--model syntaxnet/models/parsey_mcparseface/tagger-params \
--task_context syntaxnet/models/parsey_mcparseface/context.pbtxt \
--hidden_layer_sizes 64 \
--arg_prefix brain_tagger \
--graph_builder structured \
--slim_model \
--batch_size 1024 | bazel-bin/syntaxnet/parser_eval \
--input stdin-conll \
--output stdout-conll \
--hidden_layer_sizes 512,512 \
--arg_prefix brain_parser \
--graph_builder structured \
--task_context syntaxnet/models/parsey_mcparseface/context.pbtxt \
--model_path syntaxnet/models/parsey_mcparseface/parser-params \
--slim_model --batch_size 1024

这将产生以下输出:

1       The     _       DET     DT      _       4       det     _       _
2       quick   _       ADJ     JJ      _       4       amod    _       _
3       brown   _       ADJ     JJ      _       4       amod    _       _
4       fox     _       NOUN    NN      _       5       nsubj   _       _
5       ran     _       VERB    VBD     _       0       ROOT    _       _
6       over    _       ADP     IN      _       5       prep    _       _
7       the     _       DET     DT      _       9       det     _       _
8       lazy    _       ADJ     JJ      _       9       amod    _       _
9       dog     _       NOUN    NN      _       6       pobj    _       _
10      .       _       .       .       _       5       punct   _       _

这篇关于如何从SyntaxNet获取依赖项解析输出的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-12 18:41