本文介绍了R中的双循环操作(举例)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 $ p $ b ####伪数据 nobs1 4000 nobs2 mylon1 mylat1 mylon2 mylat2 ####定义距离函数 thedistance< - 函数(lon1,lat1,lon2,lat2){ R a c d = R * c 返回(d)} ptm< - proc.time() ####计算位置之间的距离#启动结果距离向量 ndistance< - nobs1 * nobs2#距离的数量 mydistance< - vector(mode =numeric,length = ndistance) k = 1 为(我在1:n obs1){ for(j in 1:nobs2){ mydistance [k] = thedistance(mylon1 [i],mylat1 [i],mylon2 [j],mylat2 [j])k = k + 1 } } proc.time() - ptm 计算时间: 用户系统耗费 249.85 0.16 251.18 在这里,我的问题是是否还有加速双循环计算的空间。非常感谢。解决方案这个选项可以减少我的机器的运行时间到2秒,因为它的一部分是向量化的。 与原始解决方案直接比较如下。 测试数据: nobs1 nobs2 mylon1 mylat1 mylon2 mylat2 原始解决方案: ####定义距离函数 thedistance< - 函数(lon1,lat1,lon2,lat2) { R delta.lon delta.lat d = R * c return(d)} ptm< - proc.time() ####计算位置之间的距离#发起产生的距离向量 ndistance< - nobs1 * nobs2#距离的数量es mydistance< - vector(mode =numeric,length = ndistance) k = 1 for(i in 1:nobs1){ for j in 1:nobs2){ mydistance [k] = thedistance(mylon1 [i],mylat1 [i],mylon2 [j],mylat2 [j])k = k + 1 } $ b proc.time() - ptm 用户系统消耗 148.243 0.681 148.901 我的方法: #modified(vectorized)距离函数: thedistance2 R delta.lon a -sin(delta.lat2)^ 2 + cos(lat1)* cos(lat2)* sin(delta.lon / 2) ^ 2 c d = R * c return(d)} ptm2< - proc.time() lst for(i in seq_len(nobs1)){ lst [[i]] = thedistance2(mylon1 [i] ,mylat1 [i],mylon2,mylat2)} res proc.time() - ptm2 User System elapsed 1.988 0.331 2.319 结果是否相同? all.equal(mydistance,res)#[1] TRUE Please look at the following small working example:#### Pseudo datanobs1 <- 4000nobs2 <- 5000mylon1 <- runif(nobs1, min=0, max=1)-76mylat1 <- runif(nobs1, min=0, max=1)+37mylon2 <- runif(nobs2, min=0, max=1)-76mylat2 <- runif(nobs2, min=0, max=1)+37#### define a distance functionthedistance <- function(lon1, lat1, lon2, lat2) { R <- 6371 # Earth mean radius [km] delta.lon <- (lon2 - lon1) delta.lat <- (lat2 - lat1) a <- sin(delta.lat/2)^2 + cos(lat1) * cos(lat2) * sin(delta.lon/2)^2 c <- 2 * asin(min(1,sqrt(a))) d = R * c return(d)}ptm <- proc.time()#### Calculate distances between locations# Initiate the resulting distance vectorndistance <- nobs1*nobs2 # The number of distancesmydistance <- vector(mode = "numeric", length = ndistance)k=1for (i in 1:nobs1) { for (j in 1:nobs2) { mydistance[k] = thedistance(mylon1[i],mylat1[i],mylon2[j],mylat2[j]) k=k+1 }}proc.time() - ptmThe computation time: user system elapsed249.85 0.16 251.18Here, my question is whether there is still room for speeding up the double for-loop calculation. Thank you very much. 解决方案 Here's an option that decreases the runtime to ~2 seconds on my machine because part of it is vectorized.A direct comparison with the original solution follows.Test data:nobs1 <- 4000nobs2 <- 5000mylon1 <- runif(nobs1, min=0, max=1)-76mylat1 <- runif(nobs1, min=0, max=1)+37mylon2 <- runif(nobs2, min=0, max=1)-76mylat2 <- runif(nobs2, min=0, max=1)+37Original solution:#### define a distance functionthedistance <- function(lon1, lat1, lon2, lat2) { R <- 6371 # Earth mean radius [km] delta.lon <- (lon2 - lon1) delta.lat <- (lat2 - lat1) a <- sin(delta.lat/2)^2 + cos(lat1) * cos(lat2) * sin(delta.lon/2)^2 c <- 2 * asin(min(1,sqrt(a))) d = R * c return(d)}ptm <- proc.time()#### Calculate distances between locations# Initiate the resulting distance vectorndistance <- nobs1*nobs2 # The number of distancesmydistance <- vector(mode = "numeric", length = ndistance)k=1for (i in 1:nobs1) { for (j in 1:nobs2) { mydistance[k] = thedistance(mylon1[i],mylat1[i],mylon2[j],mylat2[j]) k=k+1 }}proc.time() - ptm User System elapsed148.243 0.681 148.901My approach:# modified (vectorized) distance function:thedistance2 <- function(lon1, lat1, lon2, lat2) { R <- 6371 # Earth mean radius [km] delta.lon <- (lon2 - lon1) delta.lat <- (lat2 - lat1) a <- sin(delta.lat/2)^2 + cos(lat1) * cos(lat2) * sin(delta.lon/2)^2 c <- 2 * asin(pmin(1,sqrt(a))) # pmin instead of min d = R * c return(d)}ptm2 <- proc.time()lst <- vector("list", length = nobs1)for (i in seq_len(nobs1)) { lst[[i]] = thedistance2(mylon1[i],mylat1[i],mylon2,mylat2)}res <- unlist(lst)proc.time() - ptm2 User System elapsed 1.988 0.331 2.319Are the results all equal?all.equal(mydistance, res)#[1] TRUE 这篇关于R中的双循环操作(举例)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 09-12 17:02