BZOJ2200
听说加上slf优化的spfa的卡过,真的不想写这些东西。
考虑使用堆优化的dij算法。
先加上所有双向边,然后dfs一下搜出所有由双向边构成的联通块,然后加上所有的单向边,一边对所有联通块拓扑排序一边在联通块内部处理最短路,因为所有的双向边都是不带负权的,而单向边都是有负权的,所以这样规避dij贪心的错误之处。
注意到一个$inf$可能被另一个$inf$加上一个负权边拓展得到,所以最后的答案可能会小于$inf$,检验的时候注意取的极大值要小于一开始赋的$inf$。
时间复杂度$O(nlogn)$。
Code:
#include <cstdio>
#include <cstring>
#include <queue>
#include <iostream>
#include <vector>
using namespace std;
typedef pair <int, int> pin; const int N = ;
const int M = 2e5 + ;
const int inf = 1e8; int n, m1, m2, st, tot = , head[N], dis[N];
int l = , r = , q[N], deg[N], sccCnt = , bel[N];
bool vis[N];
vector <int> scc[N]; struct Edge {
int to, nxt, val;
} e[M]; inline void add(int from, int to, int val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} template <typename T>
inline void read(T &X) {
X = ; char ch = ; T op = ;
for(; ch > ''|| ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} void dfs(int x) {
bel[x] = sccCnt, scc[sccCnt].push_back(x);
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(!bel[y]) dfs(y);
}
} priority_queue <pin> Q;
void dij(int c) {
for(unsigned int i = ; i < scc[c].size(); i++) Q.push(pin(-dis[scc[c][i]], scc[c][i]));
for(; !Q.empty(); ) {
int x = Q.top().second; Q.pop();
if(vis[x]) continue;
vis[x] = ;
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(bel[y] == c) {
if(dis[y] > dis[x] + e[i].val) {
dis[y] = dis[x] + e[i].val;
Q.push(pin(-dis[y], y));
}
} else {
if(dis[y] > dis[x] + e[i].val) dis[y] = dis[x] + e[i].val;
deg[bel[y]]--;
if(!deg[bel[y]]) q[++r] = bel[y];
}
}
}
} int main() {
read(n), read(m1), read(m2), read(st);
for(int x, y, v, i = ; i <= m1; i++) {
read(x), read(y), read(v);
add(x, y, v), add(y, x, v);
} for(int i = ; i <= n; i++)
if(!bel[i]) ++sccCnt, dfs(i); for(int x, y, v, i = ; i <= m2; i++) {
read(x), read(y), read(v);
add(x, y, v);
deg[bel[y]]++;
} for(int i = ; i <= sccCnt; i++)
if(!deg[i]) q[++r] = i; memset(dis, 0x3f, sizeof(dis)); dis[st] = ;
for(; l <= r; ++l) dij(q[l]); for(int i = ; i <= n; i++) {
if(dis[i] > inf) puts("NO PATH");
else printf("%d\n", dis[i]);
} return ;
}