求阶的方法:
根据性质2,直接对ϕ(m)求出因子即可,从小到大依次判断是不是符合a = 1(mod m)(d是ϕ(m)的因子)
求最小的原根的方法:
根据性质8,对ϕ(m)求出素因子,从1开始不断测试即可,因为最小的原根很容易暴力得到。
求原根代码:(下面代码是求素数p的原根,如果不是素数,需要求出p的欧拉函数值,由于是素数,所以欧拉函数值为p-1)
ll pow(ll a, ll b, ll m)
{
a %= m;
ll ans = ;
while(b)
{
if(b & )ans = ans * a % m;
a = a * a % m;
b /= ;
}
return ans % m;
}
int tot;//素因子个数
int a[];
void get_fact(ll n)//质因数分解n
{
for(ll i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
while(n % i == )n /= i;
}
}
if(n != )a[tot++] = n;
}
bool g_test(ll g, ll p)//测试g是不是p的原根 此处p是素数 欧拉函数值为p - 1
{
for(ll i = ; i < tot; i++)
{
if(pow(g, (p - ) / a[i], p) == )return false;
}
return true;
}
int proot(ll p)
//求解p最小原根,本题p为素数
//返回最小的原根
{
get_fact(p - );//素数的欧拉函数值为p - 1
int g = ;
while()
{
if(g_test(g, p))return g;
g++;
}
}