题意描述
原题
一句话描述:
求第K个不是完全平方数的倍数的数。
K≤$10^{9}$
------------------------------------------
题解:
首先,直接求第$k$个不是完全平方数倍数的数不好求,我们不妨将它转换为一个判定问题:对于一个确定的常数$x$,他是不是第k个不是完全平方数倍数的数。这句话等价于:$[1,x]$是否有k个不是完全平方数倍数的数,这个怎么求呢?
根据容斥原理,答案就是:0个质数乘积的平方的倍数的数量(1的倍数)- 1个质数乘积的平方的倍数的数量(4,9,25的倍数)+ 2个质数乘积的平方的倍数的数量(36,100的倍数)。
恰好发现,$i^2$对应的符号就是$μ(i)$,所以答案就是
那么我们二分一下$x$,就能找到答案了。二分的范围是$[1,k*2]$.
代码实现:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
const int maxn = 1e6+;
typedef long long ll;
int mu[maxn],prime[maxn],vis[maxn];
void init_mu(int n){
int cnt=;
mu[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
}
inline ll find(ll x) {
ll least = sqrt(x+0.5),ans=;
for(register int i=;i<=least;i++) {
ans+=mu[i]*x/(1LL*i*i);
}
return ans;
}
inline ll calc(ll k) {
ll l = ,r = k<<;
while(l<r) {
ll mid = (r+l)>>;
ll temp = find(mid);
#ifdef DEBUG
printf("%d %d %d\n",l,r,temp);
#endif
if(temp<k) l=mid+;
else r=mid;
}
return r;
}
int T;
ll k;
int main() {
init_mu();
scanf("%d",&T);
while(T--) {
scanf("%lld",&k);
printf("%lld\n",calc(k));
}
return ;
}