3969 [Mz]平方和

 时间限制: 1 s
 空间限制: 64000 KB
 题目等级 : 大师 Master
 查看运行结果
 
 
题目描述 Description

斐波那契数列:f[0]=0,f[1]=1,f[i]=f[i-1]+f[i-2](i>1)

求f[1]*f[1]+f[2]*f[2]+...+f[n]*f[n]的值

3969 [Mz]平方和【斐波那契平方和】-LMLPHP

输入描述 Input Description

仅一行,一个正整数n

输出描述 Output Description

仅一行一个数,即所求的值,由于结果可能很大,需对1,000,000,007取模

样例输入 Sample Input

3

样例输出 Sample Output

6

数据范围及提示 Data Size & Hint

对于100‰的数据,n<=1,000,000=10^6

然而:

对于200‰的数据,n<=9,000,000,000,000,000,000=9*10^18

对于500‰的数据,n<=10^500

对于1000‰的数据,n<=10^50000

分类标签 Tags 点此展开

引理1:

  平方求和

  3969 [Mz]平方和【斐波那契平方和】-LMLPHP
 
关于模数,Seavot__提供。
#include<cstdio>
using namespace std;
typedef long long ll;ll n;
const ll mod=;
char s[];
struct matrix{ll s[][];}A,F;
ll mul(ll a,ll b){
ll res=;
for(;b;b>>=,a=(a+a)%mod) if(b&) res=(res+a)%mod;
return res;
}
matrix operator *(const matrix &a,const matrix &b){
matrix c;
for(int i=;i<;i++){
for(int j=;j<;j++){
c.s[i][j]=;
for(int k=;k<;k++){
c.s[i][j]+=mul(a.s[i][k],b.s[k][j]);
c.s[i][j]%=mod;
}
}
}
return c;
}
matrix fpow(matrix a,ll p){
matrix ans;
for(int i=;i<;i++) for(int j=;j<;j++) ans.s[i][j]=(i==j);
for(;p;p>>=,a=a*a) if(p&) ans=ans*a;
return ans;
}
void deal(){
for(int i=;s[i];i++){
n=(n*+s[i]-'')%(mod+);
}
}
int main(){
scanf("%s",s);deal();
A.s[][]=A.s[][]=A.s[][]=;A.s[][]=;
F.s[][]=;F.s[][]=F.s[][]=F.s[][]=;
F=fpow(A,n)*F;
ll ans=F.s[][]*F.s[][]%mod;
printf("%lld\n",ans);
return ;
}
 
暂无标签
 
05-11 20:14