1. 二叉树的遍历:先序(递归、非递归),中序(递归、非递归),后序(递归、非递归)。
#include <iostream>
#include <string>
#include <stack> using namespace std; struct BiTree
{
int NodeData = ;
struct BiTree *pLeft = nullptr;
struct BiTree *pRight = nullptr;
}; //遍历二叉树:
void show(struct BiTree *pRoot, int n)
{
if (pRoot == nullptr)
{
return;
}
else
{
show(pRoot->pLeft, n + ); for (int i = ; i < n; i++)
cout << " ";
cout << pRoot->NodeData << endl; show(pRoot->pRight, n + );
} }
//--------------------------------------------------------------
//递归中序遍历:
void RecMidTravel(struct BiTree *pRoot)
{
if (pRoot == nullptr)
{
return;
}
else
{
if (pRoot->pLeft != nullptr)
{
RecMidTravel(pRoot->pLeft);
} cout << pRoot->NodeData << endl; if (pRoot->pRight != nullptr)
{
RecMidTravel(pRoot->pRight);
}
}
} //中序非递归
void MidTravel(struct BiTree *pRoot)
{
if (pRoot == nullptr)
{
return;
}
else
{ struct BiTree *pcur = pRoot;
stack<BiTree *> mystack; while (!mystack.empty() || pcur != nullptr)
{
while (pcur != nullptr)
{
mystack.push(pcur);
pcur = pcur->pLeft; //左节点全部进栈
} if (!mystack.empty())
{
pcur = mystack.top();
cout << pcur->NodeData << endl;
mystack.pop(); //出栈
pcur = pcur->pRight; //右节点
}
} }
}
//--------------------------------------------------------------
//递归先序遍历:
void RecPreTravel(struct BiTree *pRoot)
{
if (pRoot == nullptr)
{
return;
}
else
{
cout << pRoot->NodeData << endl; if (pRoot->pLeft != nullptr)
{
RecPreTravel(pRoot->pLeft);
} if (pRoot->pRight != nullptr)
{
RecPreTravel(pRoot->pRight);
}
}
}
//先序非递归
void PreTravel(struct BiTree *pRoot)
{
if (pRoot == nullptr)
{
return;
}
else
{ struct BiTree *pcur = pRoot;
stack<BiTree *> mystack; while (!mystack.empty() || pcur != nullptr)
{
while (pcur != nullptr)
{
cout << pcur->NodeData << endl; mystack.push(pcur);
pcur = pcur->pLeft; //左节点全部进栈
} if (!mystack.empty())
{
pcur = mystack.top(); mystack.pop(); //出栈
pcur = pcur->pRight; //右节点
}
} }
} //--------------------------------------------------------------
//递归后序遍历:
void RecPostTravel(struct BiTree *pRoot)
{
if (pRoot == nullptr)
{
return;
}
else
{
if (pRoot->pLeft != nullptr)
{
RecPostTravel(pRoot->pLeft);
} if (pRoot->pRight != nullptr)
{
RecPostTravel(pRoot->pRight);
} cout << pRoot->NodeData << endl;
}
}
//后序非递归
struct nosame //标识节点是否反复出现
{
struct BiTree *pnode;
bool issame;
}; void PostTravel(struct BiTree *pRoot)
{
if (pRoot == nullptr)
{
return;
}
else
{ struct BiTree *pcur = pRoot;
stack<nosame *> mystack; //避免重复出现
nosame *ptemp; while (!mystack.empty() || pcur != nullptr)
{
while (pcur != nullptr)
{
nosame *ptr = new nosame;
ptr->issame = true;
ptr->pnode = pcur;//节点 //cout << pcur->NodeData << endl; mystack.push(ptr);
pcur = pcur->pLeft; //左节点全部进栈
} if (!mystack.empty())
{
ptemp = mystack.top();
mystack.pop(); //出栈 if (ptemp->issame == true) //第一次出现
{
ptemp->issame = false;
mystack.push(ptemp);
pcur = ptemp->pnode->pRight;//跳到右节点
}
else
{
cout << ptemp->pnode->NodeData << endl;//打印数据
pcur = nullptr;
} }
} }
} void main()
{
struct BiTree *pRoot; struct BiTree node1;
struct BiTree node2;
struct BiTree node3;
struct BiTree node4;
struct BiTree node5;
struct BiTree node6;
struct BiTree node7;
struct BiTree node8; node1.NodeData = ;
node2.NodeData = ;
node3.NodeData = ;
node4.NodeData = ;
node5.NodeData = ;
node6.NodeData = ;
node7.NodeData = ;
node8.NodeData = ; pRoot = &node1;
node1.pLeft = &node2;
node1.pRight = &node3; node2.pLeft = &node4;
node2.pRight = &node5; node3.pLeft = &node6;
node3.pRight = &node7; node4.pLeft = &node8; show(pRoot, ); cout << "中序递归:" << endl;
RecMidTravel(pRoot); //中序递归
cout << "中序非递归:" << endl;
MidTravel(pRoot); //中序非递归 cout << "先序递归:" << endl;
RecPreTravel(pRoot);
cout << "先序非递归:" << endl;
PreTravel(pRoot); //先序非递归 cout << "后序递归:" << endl;
RecPostTravel(pRoot);
cout << "后序非递归:" << endl;
PostTravel(pRoot); //后序非递归 cin.get();
}
2. 获取二叉树节点个数:
//递归获取二叉树节点个数
int getNodeCount(BiTree *pRoot)
{
if (pRoot == nullptr)
{
return ;
}
else
{
return getNodeCount(pRoot->pLeft) + getNodeCount(pRoot->pRight) + ;
}
}
3. 判断二叉树是否为完全二叉树:
//判断二叉树是否为完全二叉树
bool isCompleteBiTree(BiTree *pRoot)
{
if (pRoot == nullptr)
{
return false;
}
else
{
queue<BiTree *> myq;
myq.push(pRoot);
bool mustHaveChild = false; //必须有子节点
bool result = true; //结果 while (!myq.empty())
{
BiTree *node = myq.front();//头结点
myq.pop(); //出队 if (mustHaveChild) //必须有孩子
{
if (node->pLeft != nullptr || node->pRight != nullptr)
{
result = false;
break; } }
else
{
if (node->pLeft != nullptr && node->pRight != nullptr)
{
myq.push(node->pLeft);
myq.push(node->pRight);
}
else if (node->pLeft != nullptr && node->pRight == nullptr)
{
mustHaveChild = true;
myq.push(node->pLeft);
}
else if (node->pLeft == nullptr && node->pRight != nullptr)
{
result = false;
break;
}
else
{
mustHaveChild = true;
}
}
} return result;
}
}
4. 求二叉树两个节点的最小公共祖先:
//求二叉树两个节点的最小公共祖先
bool findnode(BiTree *pRoot, BiTree *node) //判断节点是否在某个节点下
{
if (pRoot == nullptr || node == nullptr)
{
return false;
}
if (pRoot == node)
{
return true;
} bool isfind = findnode(pRoot->pLeft, node);
if (!isfind)
{
isfind = findnode(pRoot->pRight, node);
} return isfind;
} BiTree *getParent(BiTree *pRoot, BiTree *pChild1, BiTree *pChild2)
{
if (pRoot == pChild1 || pRoot == pChild2)
{
return pRoot;
} if (findnode(pRoot->pLeft, pChild1))
{
if (findnode(pRoot->pRight, pChild2))
{
return pRoot;
}
else
{
return getParent(pRoot->pLeft, pChild1, pChild2);
}
}
else
{
if (findnode(pRoot->pLeft, pChild2))
{
return pRoot;
}
else
{
return getParent(pRoot->pRight, pChild1, pChild2);
}
}
}
5. 二叉树的翻转:
//二叉树的翻转
BiTree *revBiTree(BiTree *pRoot)
{
if (pRoot==nullptr)
{
return nullptr;
} BiTree *leftp = revBiTree(pRoot->pLeft);
BiTree *rightp = revBiTree(pRoot->pRight); pRoot->pLeft = rightp;
pRoot->pRight = leftp; //交换 return pRoot;
}
6. 求二叉树第k层的节点个数:
//求二叉树第K层的节点个数
int getLevelConut(BiTree *pRoot, int k)
{
if (pRoot == nullptr || k < )
{
return ;
}
if (k == )
{
return ;
}
else
{
int left = getLevelConut(pRoot->pLeft, k - );
int right = getLevelConut(pRoot->pRight, k - ); return (left + right);
}
}
7. 求二叉树中节点的最大距离(相距最远的两个节点之间的距离):
//求二叉树中节点的最大距离
struct res //用以递归间传递距离
{
int maxDistance = ;
int maxDepth = ;
}; res getMaxDistance(BiTree *pRoot)
{
if (pRoot == nullptr)
{
res r1;
return r1;
} res leftr = getMaxDistance(pRoot->pLeft);
res rightr = getMaxDistance(pRoot->pRight); res last; //最终结果
last.maxDepth = max(leftr.maxDepth + , rightr.maxDepth + );//求最大深度
last.maxDistance = max(max(leftr.maxDistance, rightr.maxDistance), leftr.maxDepth + rightr.maxDepth + );//求最大距离 return last;
}
8. 判断二叉树是否为平衡二叉树:
//判断二叉树是否为平衡二叉树:
bool isAVL(BiTree *pRoot, int & depth) //需要引用来传递数据
{
if (pRoot == nullptr)
{
depth = ;
return true;
} int leftdepth = ;
int rightdepth = ;
bool left = isAVL(pRoot->pLeft, leftdepth);
bool right = isAVL(pRoot->pRight, rightdepth); if (left && right && abs(leftdepth - rightdepth) <= )
{
depth = + (leftdepth > rightdepth ? leftdepth : rightdepth);//深度
return true;
}
else
{
return false;
}
}