本文介绍了在建模之前减少因子水平的数量的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个2600级的因子,我想在建模之前将其降低到〜10
I have a factor with 2600 levels and I want to reduce it to ~10 before modelling
我想我可以通过一个操作来做到这一点,如果列出的因子少于x次,应将其放入称为其他的存储桶中。
I thought I could do this with an operation that says "if a factor is listed fewer than x times, it should be placed into a bucket called "other"
以下是一些示例数据:
df <- data.frame(colour=c("blue","blue","blue","green","green","orange","grey"))
这是我希望得到的输出:
And this is the output I am hoping for:
colour
1 blue
2 blue
3 blue
4 green
5 green
6 other
7 other
我尝试了以下操作:
df %>% mutate(colour = ifelse(count(colour) < 2, 'other', colour))
推荐答案
tidyverse中实际上有一个名为 forcats
的不错的程序包,它可以帮助处理因素。您可以使用 fct_lump
,它确实满足您的需求:
There is actually a nice package in the tidyverse called forcats
which helps in dealing with factors. You can use fct_lump
, which does exactly what you need:
library(tidyverse)
df %>% mutate(colour = fct_lump(colour, n = 2))
#> colour
#> 1 blue
#> 2 blue
#> 3 blue
#> 4 green
#> 5 green
#> 6 Other
#> 7 Other
这篇关于在建模之前减少因子水平的数量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!