🔥 内容介绍

摘要

本文提出了一种基于萤火虫优化算法(FA)的单仓库多旅行商问题(MTSP)求解方法。该方法首先将MTSP问题转化为车辆路径问题(VRP),然后利用FA算法对VRP进行求解。FA算法是一种基于萤火虫群体行为的优化算法,它具有较强的全局搜索能力和局部搜索能力。在MTSP问题中,FA算法可以有效地搜索到最优解或近似最优解。

1. 问题描述

单仓库多旅行商问题(MTSP)是指在单一仓库的情况下,有多个旅行商需要从仓库出发,访问多个客户点,并最终返回仓库。目标是找到一条最短的路径,使所有客户点都被访问到。MTSP问题是一个NP难问题,即不存在多项式时间内的精确算法可以解决它。

2. 萤火虫优化算法(FA)

萤火虫优化算法(FA)是一种基于萤火虫群体行为的优化算法。萤火虫在自然界中具有趋光性,即它们会向光源移动。FA算法利用这一特性来模拟萤火虫的搜索行为。在FA算法中,每个萤火虫代表一个解,萤火虫的光亮度代表解的质量。萤火虫会根据光亮度来移动,光亮度越强的萤火虫会吸引更多的萤火虫。通过这种方式,FA算法可以有效地搜索到最优解或近似最优解。

3. 基于FA算法的MTSP求解方法

本文提出的基于FA算法的MTSP求解方法包括以下步骤:

  1. 将MTSP问题转化为VRP问题。

  2. 初始化FA算法,包括生成萤火虫种群、设置萤火虫参数等。

  3. 萤火虫根据光亮度移动,并更新自己的位置。

  4. 计算萤火虫的光亮度,并更新萤火虫种群。

  5. 重复步骤3和步骤4,直到达到终止条件。

  6. 输出最优解或近似最优解。

📣 部分代码

%___________________________________________________________________%%  Grey Wolf Optimizer (GWO) source codes version 1.0               %%                                                                   %%  Developed in MATLAB R2011b(7.13)                                 %%                                                                   %%  Author and programmer: Seyedali Mirjalili                        %%                                                                   %%         e-Mail: ali.mirjalili@gmail.com                           %%                 seyedali.mirjalili@griffithuni.edu.au             %%                                                                   %%       Homepage: http://www.alimirjalili.com                       %%                                                                   %%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %%               Grey Wolf Optimizer, Advances in Engineering        %%               Software , in press,                                %%               DOI: 10.1016/j.advengsoft.2013.12.007               %%                                                                   %%___________________________________________________________________%% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

⛳️ 运行结果

【FA-MTSP问题】基于萤火虫优化算法求解单仓库多旅行商问题附MATLAB代码-LMLPHP

【FA-MTSP问题】基于萤火虫优化算法求解单仓库多旅行商问题附MATLAB代码-LMLPHP

4. 实验结果

本文将提出的方法与其他几种MTSP求解方法进行了比较,包括遗传算法(GA)、粒子群优化算法(PSO)和蚁群优化算法(ACO)。实验结果表明,提出的方法在求解MTSP问题时具有较好的性能。

5. 结论

本文提出了一种基于FA算法的MTSP求解方法。该方法将MTSP问题转化为VRP问题,然后利用FA算法对VRP进行求解。FA算法具有较强的全局搜索能力和局部搜索能力,因此可以有效地搜索到最优解或近似最优解。实验结果表明,提出的方法在求解MTSP问题时具有较好的性能。

🔗 参考文献

[1] 袁豪.旅行商问题的研究与应用[D].南京邮电大学[2024-01-17].DOI:CNKI:CDMD:2.1017.859886.

[2]  Hailong W , Huiren Z , Yinghui W ,et al.Study on multiple traveling salesman problem based on genetic algorithm基于遗传算法的一类多旅行商问题研究[J].计算机应用研究, 2009, 26(5):1726-1728.DOI:10.3969/j.issn.1001-3695.2009.05.036.

[3] 孟祥虎.着色旅行商问题及其动态化研究[D].东南大学,2017.DOI:CNKI:CDMD:1.1018.128499.

[4] 王艳,王秋萍,王晓峰.基于改进萤火虫算法求解旅行商问题[J].计算机系统应用, 2018, 27(8):7.DOI:CNKI:SUN:XTYY.0.2018-08-037.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
01-18 13:52