题意:

给定n个城市的货物买卖价格, 然后给定n-1条道路,每条路有不同的路费, 求出从某两个城市买卖一次的最大利润。

利润 = 卖价 - (买价 + 路费)

hdu 6201 transaction (最短路变形——带负权最长路)-LMLPHP

样例数据, 最近是从第一个点买入, 第4个点卖出, 利润为8

分析:

1.如果一条边连接(u,v),路费为cost ,城市买卖价格用P( )表示, 那么他的边权就表达为(P(v) - P(u) - cost).

2.我们可以假设有一个起点。他连接着所有的点,边权为0。

3.那么如果从这个点出发的话, 就等于是把所有的城市都尝试作为买入城市

4.然后只要做一次允许有副权的SPFA最短路算法就能算出正确答案了。

#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
const int maxn = 1e5 + ;
int T,n;
int d[maxn], P[maxn], vis[maxn];
struct Node{
int num;
int dis;
Node(int a = , int b = ):num(a), dis(b){}
};
vector<Node> G[maxn];
int spfa(){
memset(d,-,sizeof(d));//因为要做最长路, 所以把初始值设为-1。
memset(vis,,sizeof(vis));
for(int i = ; i <= n; i++) G[].push_back(Node(i,)); // 虚拟一个起点,练向所有的点。
queue<int> q; d[] = ;
q.push();
vis[] = ;
while(!q.empty()){
int u = q.front();
for(int i = ; i < G[u].size(); i++){
int v = G[u][i].num;
if(d[v] < d[u] + G[u][i].dis){
d[v] = d[u] + G[u][i].dis;
if(!vis[v]){
q.push(v);
vis[v] = ;
}
}
}
q.pop();
vis[u] = ;
}
int ans = -;
for(int i = ; i <= n; i++){
ans = max(ans,d[i]);
}
// puts("");
return ans;
}
void init(int n){
for(int i = ; i <= n; i++ )
G[i].clear();
}
int main(){
scanf("%d", &T);
while(T--){
scanf("%d", &n);
for(int i = ; i <= n; i++){
scanf("%d", &P[i]);
} for(int i = ; i < n - ; i++){
int u , v, cost;
scanf("%d %d %d",&u, &v, &cost);
G[u].push_back(Node(v,P[v] - P[u] - cost));//双向边
G[v].push_back(Node(u,P[u] - P[v] - cost)); }
printf("%d\n",spfa());
init(n);//初始化临接表
}
}
04-17 10:21
查看更多