题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2866
题目大意:
问你1到L中有多少个素数满足n^3 + p*n^2 = m^3(其中n,m为大于1的自然数)
解题思路:
首先简化成n^2 *( n + p ) = m^3
假设 n^2 和 n+p 之间有公共素因子 p , 那么 n+p = k*p , 即 n=p*(k-1),
带进去得到 p^3 * (k-1)^2 *k = m^3 , (k-1)^2*k 肯定是不能表示成某一个数的三次幂的,
所以假设不成立,所以 n^2 和 n+p 之间没有公共素因子 p ,
那么可以假设n=x^3 , n+p=y^3 , 相减得到 p = y^3 - x^3 = (y-x) *(y^2+y*x+x^2) , p是素数,
所以 y-x=1 (这不用过多解释了吧,素数的因子只有1和P,右括号肯定是大于1的数了)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n, m;
const int maxn = +;
int prime[maxn];
bool is_prime[maxn];
int sieve(int n)//返回n以内素数的个数
{
int p = ;
for(int i = ; i <= n; i++)is_prime[i] = ;
is_prime[] = is_prime[] = ;
for(ll i = ; i <= n; i++)
{
if(is_prime[i])
{
prime[p++] = i;
for(ll j = i * i; j <= n; j += i)is_prime[j] = ;//这里涉及i*i,必须使用long long
}
}
return p;
}
int ans[maxn];
int main()
{
sieve();
for(int i = ; ; i++)
{
int t = * i * i + * i + ;
if(t > )break;
if(is_prime[t])ans[t] = ;
}
for(int i = ; i < maxn; i++)
ans[i] += ans[i - ];
while(cin >> n)
if(ans[n])cout<<ans[n]<<endl;
else cout<<"No Special Prime!"<<endl;
return ;
}