---恢复内容开始---
一、题意
在二维坐标系内,给定若干个点和目标点距离该点的曼哈顿距离,求是否存在唯一解使得目标点坐标为整数。
二、题解
重新思考题目模型,考虑曼哈顿距离一定时,几何含义为,以给定点为中心,以二倍曼哈顿距离为对角线的矩形的轮廓线。则原题可以理解为,寻找唯一的被所有矩形覆盖的整数点。
于是,考虑扫描线思路,首先将所有涉及到的坐标离散化并标记出来,其次建立线段树,用于统计某个区间出现的最多的点的次数。则,nodes[0]中保存着当前各个节点最大覆盖次数。当覆盖次数为n时,必然存在实数解,但是不一定存在整数解。
考虑模型实际上在y轴上推进,x轴上做统计。考虑到几何意义,则有2种边——横着的和竖着的。横边在扫描线扫描过程中,应当在切换下一坐标之前消除。但是竖边应当用一个点来表示,考虑几何意义,应当在下一个横边之前消除。另外题目的特殊情况包括了r为0的点,要把他当做横边特殊判断一下。
#include<iostream>
#include <stdio.h>
#include<stdlib.h>
#include <assert.h>
#include <algorithm>
#include <cmath>
#include <set>
#include <vector> using namespace std; #define ll long long
#define ld long double
#define ppd pair<ld,ld>
#define equal(x,y) (abs(x-y)<=EXP)
#define idx(x) (lower_bound(mapp,mapp+mapp_num,x)-mapp) #define init_coor(x) (equal(x.first,-2333666)&&equal(x.second,-2333666)) const int MAXN = ;
const ld EXP = 1e-;
const ld SQRT_2 = sqrt(); ppd rotate(ppd p){
ld dis = sqrt(p.first*p.first+p.second*p.second);
if(equal(dis,))return p;
ld coss = (p.first - p.second)/(dis*SQRT_2);
ld sins = (p.first + p.second)/(dis*SQRT_2);
return make_pair(dis*coss,dis*sins);
} ppd anti_rotate(ppd p){ ld dis = sqrt(p.first*p.first+p.second*p.second);
if(equal(dis,))return p;
ld coss = (p.first + p.second)/(dis*SQRT_2);
ld sins = (-p.first + p.second)/(dis*SQRT_2);
return make_pair(dis*coss,dis*sins);
} class Order{
public:
ld x1,x2,y;int key;
int tt;
Order(){}
Order(ld x,ld xx,ld yy,int kk){
this->x1 = x;
this->x2 = xx;
this->y = yy;
this->key = kk;
this->tt = ;
}
}; inline bool is_negative_point(Order o){
return(equal(o.x1,o.x2)&&o.key<&&o.tt);
}
inline bool is_positive_point(Order o){
return(equal(o.x1,o.x2)&&o.key>&&o.tt);
}
inline bool is_point(Order o){
return equal(o.x1,o.x2)&&o.tt;
} bool cmp1(Order o1,Order o2){
if(equal(o1.y,o2.y)){
if(is_negative_point(o1) && !is_negative_point(o2))return true;
if(!is_negative_point(o1) && is_negative_point(o2))return false;
if(is_positive_point(o1) && !is_positive_point(o2))return false;
if(!is_positive_point(o1) && is_positive_point(o2))return true; return o1.key > o2.key;
}
return o1.y<o2.y;
} Order orders[MAXN];
int orders_num; ld mapp[MAXN];
int mapp_num; bool cmp(ld l1,ld l2){
if(equal(l1,l2))return l1>l2;
else return l1<l2;
} void show(Order o){
cout<<"check_order: "<<o.x1<<" "<<o.x2<<" at: "<<o.y<<" key: "<<o.key<<endl;
} class Node{
public:
int l,r,lc,rc,num,lazy;
};
Node nodes[MAXN];
int nodes_num; void tree_init(int a,int b){
int now = nodes_num++;
nodes[now].l = a;
nodes[now].r = b;
nodes[now].num = nodes[now].lazy = ;
if(a == b-)return ;
int mid = (a+b)/; nodes[now].lc = nodes_num;
tree_init(a,mid);
nodes[now].rc = nodes_num;
tree_init(mid,b);
} void push_down(int now){
int lazy = nodes[now].lazy;
nodes[now].lazy = ;
int l = nodes[now].l;
int r = nodes[now].r;
if(l == r-)return ;
int lc = nodes[now].lc;
int rc = nodes[now].rc;
nodes[lc].lazy += lazy;
nodes[lc].num += lazy;
nodes[rc].lazy += lazy;
nodes[rc].num += lazy;
} void tree_insert(int now,int a,int b,int key){
int l = nodes[now].l;
int r = nodes[now].r;
push_down(now);
if(a == l && b == r){
nodes[now].num += key;
nodes[now].lazy += key;
return ;
}
int mid = (l+r)/;
int lc = nodes[now].lc;
int rc = nodes[now].rc;
if(a<mid){
tree_insert(lc,a,min(b,mid),key);
if(b>mid) tree_insert(rc,mid,b,key);
}else tree_insert(rc,a,b,key);
nodes[now].num = max(nodes[nodes[now].lc].num,nodes[nodes[now].rc].num);
} ld fitness_x,lasty; void show(ppd p)
{
// cout<<"check_coor: "<<p.first<<" "<<p.second<<endl;
printf("check_coor: %.10lf %.10lf\n",(double)p.first,(double)p.second);
} bool check_int(ppd p){
p.first += EXP;
p.second += EXP; // show(p);
// printf("check_coor: %.5f %.5f %.5f %.5f\n",(double)p.first,(double)ceil(p.first),(double)p.second,(double)ceil(p.second)); return equal(p.first,floor(p.first)) || equal(p.second,floor(p.second));
} int find_max_num(int now){
if(now == )fitness_x = -;
int maxx = nodes[now].num;
int l = nodes[now].l;
int r = nodes[now].r;
push_down(now);
if(l == r-){
ld xx = mapp[l];
ld yy = lasty;
ppd coor = make_pair(xx,yy);
ppd std_coor = anti_rotate(coor);
// show(coor);
// show(std_coor);
if(check_int(std_coor)){
fitness_x = mapp[l];
return ;
}
return ;
}
int lc = nodes[now].lc;
int rc = nodes[now].rc;
int ret = ;
if(nodes[lc].num == maxx)ret += find_max_num(lc);
if(nodes[rc].num == maxx)ret += find_max_num(rc);
return ret;
} int n; ppd succ_coor; void init(){
nodes_num = ;
orders_num = ;
mapp_num = ; succ_coor = make_pair(-,-); mapp[mapp_num++] = 1e8;
mapp[mapp_num++] = -1e8; for(int i=;i<n;++i){
ld x,y,r;
cin>>x>>y>>r;
ppd p1 = make_pair(x-r,y);
ppd p2 = make_pair(x,y-r);
ppd p3 = make_pair(x+r,y); if(equal(r,)){ ppd coor = rotate(make_pair(x,y));
mapp[mapp_num++] = coor.first;
orders[orders_num++] = Order(coor.first,coor.first,coor.second,);
orders[orders_num-].tt = ;
orders[orders_num++] = Order(coor.first,coor.first,coor.second,-);
orders[orders_num-].tt = ;
continue;
}
// show(p1);
// show(p2);
// show(p3); p1 = rotate(p1);
p2 = rotate(p2);
p3 = rotate(p3); // show(anti_rotate(p1));
// show(anti_rotate(p2));
// show(anti_rotate(p3)); orders[orders_num++] = Order(p1.first,p2.first,p1.second,);
orders[orders_num++] = Order(p1.first,p2.first,p3.second,);
orders[orders_num++] = Order(p1.first,p2.first,p1.second,-);
orders[orders_num++] = Order(p1.first,p2.first,p3.second,-); orders[orders_num++] = Order(p1.first,p1.first,p1.second,);
orders[orders_num++] = Order(p2.first,p2.first,p1.second,);
orders[orders_num++] = Order(p1.first,p1.first,p3.second,-);
orders[orders_num++] = Order(p2.first,p2.first,p3.second,-); mapp[mapp_num++] = p1.first;
mapp[mapp_num++] = p2.first;
// cout<<p1.first<<" "<<p2.first<<endl;
}
sort(orders,orders+orders_num,cmp1);
sort(mapp,mapp+mapp_num,cmp); int len = mapp_num;
mapp_num = ;
for(int i=;i<len;++i){ // cout<<mapp[i]<<endl;
if(!(equal(mapp[i],mapp[mapp_num]))){
mapp_num++;
mapp[mapp_num] = mapp[i]; }
}mapp_num++; tree_init(,mapp_num); int succ = ; lasty = orders[].y; for(int i=;i<orders_num;++i){ // cout<<"circle: "<<i<<" "<<orders_num<<endl;
// cout<<"check_num: "<<nodes[0].num<<endl;
// show(orders[i]);
// cout<<"check_mapp: "<<mapp[idx(orders[i].x1)]<<" "<<orders[i].x1<<endl;
// printf("check_mapp: %.5f %.5f\n",(double)mapp[idx(orders[i].x1)],(double)orders[i].x1);
// printf("check_mapp: %.5f %.5f\n",(double)mapp[idx(orders[i].x2)],(double)orders[i].x2); if(nodes[].num == n){
int maxx_num = find_max_num();
if(maxx_num >){
succ = -;
break;
}
if(maxx_num == )continue; if(init_coor(succ_coor))succ_coor = make_pair(fitness_x,lasty);
else{
succ = -;
break;
}
}
tree_insert(,idx(orders[i].x1),idx(orders[i].x2)+,orders[i].key);
lasty = orders[i].y;
} if(succ == -){
puts("uncertain");
return;
}
if(init_coor(succ_coor)){
puts("impossible");
return;
}else{
succ_coor = anti_rotate(succ_coor);
// succ_coor.first += EXP;
// succ_coor.second += EXP;
printf("%.0f %.0f\n",(double)succ_coor.first,(double)succ_coor.second);
} } int main(){ while(cin>>n)init(); return ;
}