题目描述

已知有两个字串A,BA,BA,B及一组字串变换的规则(至多666个规则):

A1A_1A1​ ->B1 B_1B1​

A2A_2A2​ -> B2B_2B2​

规则的含义为:在 AAA中的子串 A1A_1A1​ 可以变换为B1 B_1B1​,A2A_2A2​ 可以变换为 B2B_2B2​ …。

例如:AAA='abcdabcdabcd'BBB='xyzxyzxyz'

变换规则为:

‘abcabcabc’->‘xuxuxu’‘ududud’->‘yyy’‘yyy’->‘yzyzyz’

则此时,AAA可以经过一系列的变换变为BBB,其变换的过程为:

‘abcdabcdabcd’->‘xudxudxud’->‘xyxyxy’->‘xyzxyzxyz’

共进行了333次变换,使得AAA变换为BBB。

输入输出格式

输入格式:

输入格式如下:

AAA BBB
A1A_1A1​ B1B_1B1​
A2A_2A2​ B2B_2B2​ |-> 变换规则

... ... /

所有字符串长度的上限为202020。

输出格式:

输出至屏幕。格式如下:

若在101010步(包含101010步)以内能将AAA变换为BBB,则输出最少的变换步数;否则输出"NO ANSWER!"

输入输出样例

输入样例#1:

abcd xyz
abc xu
ud y
y yz
输出样例#1:

3
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 100005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ struct node {
string str;
int stp;
};
string a, b;
string orign[maxn];
string trans[maxn];
int n, ans;
map<string, int>mp;
string tran(const string &str, int i, int j) {
string ans = "";
if (i + orign[j].length() > str.length())return ans;
for (int k = 0; k < orign[j].length(); k++) {
if (str[i + k] != orign[j][k])return ans;
}
ans = str.substr(0, i);
ans += trans[j];
ans += str.substr(i + orign[j].length());
return ans;
}
void bfs() {
queue<node>q;
node s; s.str = a; s.stp = 0; q.push(s);
while (!q.empty()) {
node u = q.front(); q.pop();
string tmp;
if (mp.count(u.str))continue;
if (u.str == b) {
ans = u.stp; break;
}
mp[u.str] = 1;
for (int i = 0; i < u.str.length(); i++) {
for (int j = 0; j < n; j++) {
tmp = tran(u.str, i, j);
if (tmp != "") {
node v; v.str = tmp; v.stp = u.stp + 1;
q.push(v);
}
}
}
}
if (ans > 10 || ans == 0)cout << "NO ANSWER!" << endl;
else cout << ans << endl;
} int main() {
ios::sync_with_stdio(0);
cin >> a >> b;
while (cin >> orign[n] >> trans[n])n++;
bfs();
return 0;
}
05-25 22:23