图的遍历
目录
- 《算法笔记》重点摘要
- 1021 Deepest Root (25)
- 1076 Forwards on Weibo (30)
《算法笔记》 10.3 图的遍历 重点摘要
1. 定义
- 边 两端可以是 相同 的顶点
- 可以把 无向图 当作所有 边 都由 正向 和 负向 两条 有向边 组成
- 顶点的度:与该顶点相连的边的条数
- 顶点和边量化的属性分别成为点权和边权
2. 存储
2.1 邻接矩阵
- G[i][j] 存放边权,不存在的边设边权为0、-1 或 一个很大的数
- 邻接矩阵只适用于顶点数目不太大(一般不超过 1000)的题目
2.2 邻接表
- 若只存放每条边的终点编号,vector 元素类型定义为 int 即可
vector<int> Adj[N];
Adj[u].push_back(v);
- 若同时存放终点编号和边权,可建立结构体,vector 元素类型定义为结构体
struct Node{
int v;
int weight;
};
vector<Node> Adj[N];
Adj[u].push_back({v,weight});
3. DFS
若已知给定图为连通图,则只需一次 DFS 即可完成遍历
const int MAXV = 1000;
const INF = 1000000000;
3.1 邻接矩阵
int n, G[MAXV][MAXV];
bool vis[MAXV] = {false};
void DFS(int u, int depth){
vis[u] = true;
// 若需要对 u 进行一些操作,在这里进行
for (int v = 0; v < n; v++)
if (!vis[v] && G[u][v] != INF)
DFS(v, depth + 1);
}
void DFSTrave(){
for (int u = 0; u < n; u++)
if (!vis[u])
DFS(u, 1);
}
3.2 邻接表
vector<int> Adj[MAXV];
int n;
bool vis[MAXV] = {false};
void DFS(int u, int depth){
vis[u] = true;
// 若需要对 u 进行一些操作,在这里进行
for(int i = 0; i < Adj[u].size(); i++){
int v = Adj[u][i];
if (!vis[v])
DFS(v, depth + 1);
}
}
void DFSTrave(){
for (int u = 0; u < n; u++)
if (!vis[u])
DFS(u,1);
}
4. BFS
4.1 邻接矩阵
int n, G[MAXV][MAXV];
bool inq[MAXV] = {false};
void BFS(int u){
queue<int> q;
q.push(u);
inq[u] = true;
while (!q.empty()){
int u = q.front();
q.pop();
for (int v = 0; v < n; v++){
if (!inq[v] && G[u][v] != INF){
q.push(v);
inq[v] = true;
}
}
}
}
void BFSTrave(){
for (int u = 0; u < n; u++)
if (!inq[u])
BFS(u);
}
4.2 邻接表
vector<int> Adj[MAXN];
int n;
bool inq[MAXN] = {false};
void BFS(int u){
queue<int> q;
q.push(u);
inq[u] = true;
while (!q.empty()){
int u = q.front();
q.pop();
for (int i = 0; i < Adj[u].size(); i++){
int v = Adj[u][i];
if (!inq[v]){
q.push(v);
inq[v] = true;
}
}
}
}
void BFSTrave(){
for (int u = 0; u < n; u++)
if (!inq[u])
BFS(u);
}
4.3 输出结点层号(邻接表)
struct Node{
int v;
int level;
};
vector<Node> Adj[N];
void BFS(int s){
queue<Node> q;
Node start = {s,0};
q.push(start);
inq[start.v] = true;
while(!q.empty()){
Node now = q.front();
q.pop();
int u = now.v;
for (int i = 0; i < Adj[u].size(); i++){
Node next = Adj[u][i];
next.level = now.level + 1;
if (!inq[next.v]){
q.push(next);
inq[next.v] = true;
}
}
}
}
1021 Deepest Root (25)
题目思路
- 边为双向,邻接表法注意两个方向都要存储
- 先按正常 DFS 遍历一遍,记录连通分量个数
- 若不为树(分量个数 > 1),直接按要求输出分量个数即可
- 若为树(分量个数 = 1),分别以每个结点为根结点进行 DFS,记录这样遍历树的深度,与最大深度比较
- 相等则将此根压入根集合中
- 若大于最大深度,说明找到了更大深度,将之前的根集合清空,压入新发现的根结点
#include<iostream>
#include<vector>
#include<set>
using namespace std;
set<int> roots;
vector<int> Adj[10001];
int n, components = 0, depth = 0, maxdepth = 0;
bool vis[10001] = {false};
void DFS(int root, int level){
vis[root] = true;
if (level > depth) depth = level;
for (int i = 0; i < Adj[root].size(); i++)
if (!vis[Adj[root][i]])
DFS(Adj[root][i], level+1);
}
void DFSTrave(){
for (int i = 1; i < n + 1; i++){
if (!vis[i]){
DFS(i, 0);
components++;
}
}
if (components == 1){
for (int i = 1; i < n + 1; i++){
fill(vis, vis+10001, false);
depth = 0;
DFS(i,0);
if (depth == maxdepth) roots.insert(i);
else if (depth > maxdepth){
maxdepth = depth;
roots.clear();
roots.insert(i);
}
}
}
}
int main()
{
int u, v;
scanf("%d", &n);
for (int i = 1; i < n; i++){
scanf("%d%d", &u, &v);
Adj[u].push_back(v);
Adj[v].push_back(u);
}
DFSTrave();
if (components > 1) printf("Error: %d components\n", components);
else for (auto it: roots) printf("%d\n",it);
return 0;
}
1076 Forwards on Weibo (30)
题目思路:带层数的广度优先
- 用 Node 结构体同时保存 id 和 level
- 用 inq 记录结点是否入队过,入队过不能重复入队(重复转发消息)
- 记录结点层数,若超过要求的最高层数也不可再入队
#include<iostream>
#include<vector>
#include<queue>
using namespace std;
struct Node{
int id, level;
};
int maxlevel, numforward;
vector<Node> Adj[1001];
void BFS(int start){
bool inq[1001] = {false};
queue<Node> q;
q.push({start,0});
inq[start] = true;
while (!q.empty()){
Node now = q.front();
q.pop();
for (int i = 0; i < Adj[now.id].size(); i++){
Node next = Adj[now.id][i];
next.level = now.level + 1;
if (!inq[next.id] && next.level <= maxlevel){
inq[next.id] = true;
q.push(next);
numforward++;
}
}
}
}
int main()
{
int n, m, followed, k, query;
scanf("%d%d", &n, &maxlevel);
for (int i = 1; i < n + 1; i++){
scanf("%d", &m);
for (int j = 0; j < m; j++){
scanf("%d", &followed);
Adj[followed].push_back({i,0});
}
}
scanf("%d", &k);
for (int i = 0; i < k; i++){
scanf("%d", &query);
numforward = 0;
BFS(query);
printf("%d\n", numforward);
}
return 0;
}