问题描述
我正在使用Keras构建网络.在此过程中,我需要一个接受LSTM输入的层,什么也不做,只是输出与输入完全相同.即,如果LSTM的每个输入记录都像[[A_t1,A_t2,A_t3,A_t4,A_t5,A_t6]],那么我正在寻找一层:
I am using Keras to build a Network. During the process, I need a layer, which takes an LSTM input, doing nothing, just output exactly the same as input. i.e. if each input record of LSTM is like [[A_t1, A_t2, A_t3, A_t4, A_t5, A_t6]], I am looking for a layer:
model.add(SomeIdentityLayer(x))
SomeIdentityLayer(x)将[[A_t1, A_t2, A_t3, A_t4, A_t5, A_t6]]
作为输入并输出[[A_t1, A_t2, A_t3, A_t4, A_t5, A_t6]]
. Keras中可以使用这种层/结构吗?谢谢!
SomeIdentityLayer(x) will take [[A_t1, A_t2, A_t3, A_t4, A_t5, A_t6]]
as input and output [[A_t1, A_t2, A_t3, A_t4, A_t5, A_t6]]
. Is such layer/structure available in Keras? Thanks!
推荐答案
对于像身份这样的简单操作,您可以只使用Lambda层,例如:
For a simpler operation like identity, you can just use a Lambda layer like:
model.add(Lambda(lambda x: x))
这将返回与您的输入完全相同的输出.
This will return an output exactly the same as your input.
这篇关于Python Keras:图层输出与输入完全相同的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!