问题描述
好吧,所以我在安德鲁(Andrew Ng)在Coursera上的机器学习课程中,并且想要适应作为作业4的一部分完成的神经网络.
Okay, so I am in the middle of Andrew Ng's machine learning course on coursera and would like to adapt the neural network which was completed as part of assignment 4.
特别是,作为作业的一部分,我正确完成的神经网络如下:
In particular, the neural network which I had completed correctly as part of the assignment was as follows:
- Sigmoid激活功能:
g(z) = 1/(1+e^(-z))
- 10个输出单位,每个单位可能占用0或1
- 1个隐藏层
- 用于最小化成本函数的反向传播方法
- 成本函数:
- Sigmoid activation function:
g(z) = 1/(1+e^(-z))
- 10 output units, each which could take 0 or 1
- 1 hidden layer
- Back-propagation method used to minimize cost function
- Cost function:
其中L=number of layers
,s_l = number of units in layer l
,m = number of training examples
,K = number of output units
现在,我想调整练习,以便有一个连续的输出单位,其取值介于[0,1]之间,并且我正在尝试找出需要更改的内容,到目前为止,我已经有了
Now I want to adjust the exercise so that there is one continuous output unit that takes any value between [0,1] and I am trying to work out what needs to change, so far I have
- 用我自己的数据替换数据,即输出是介于0和1之间的连续变量
- 更新了对输出单元数量的引用
- 将反向传播算法中的成本函数更新为:其中
a_3
是根据正向传播确定的输出单位的值.
- Replaced the data with my own, i.e.,such that the output is continuous variable between 0 and 1
- Updated references to the number of output units
- Updated the cost function in the back-propagation algorithm to:where
a_3
is the value of the output unit determined from forward propagation.
我敢肯定,梯度检查方法会显示由反向传播确定的梯度,并且数值近似不再匹配,因此必须进行其他更改.我没有改变S形梯度.它留在f(z)*(1-f(z))
处,其中f(z)
是S型函数1/(1+e^(-z)))
,我也没有更新导数公式的数值近似;只需(J(theta+e) - J(theta-e))/(2e)
.
I am certain that something else must change as the gradient checking method shows the gradient determined by back-propagation and that by the numerical approximation no longer match up. I did not change the sigmoid gradient; it is left at f(z)*(1-f(z))
where f(z)
is the sigmoid function 1/(1+e^(-z)))
nor did I update the numerical approximation of the derivative formula; simply (J(theta+e) - J(theta-e))/(2e)
.
任何人都可以告知需要采取哪些其他步骤吗?
Can anyone advise of what other steps would be required?
在Matlab中编码如下:
Coded in Matlab as follows:
% FORWARD PROPAGATION
% input layer
a1 = [ones(m,1),X];
% hidden layer
z2 = a1*Theta1';
a2 = sigmoid(z2);
a2 = [ones(m,1),a2];
% output layer
z3 = a2*Theta2';
a3 = sigmoid(z3);
% BACKWARD PROPAGATION
delta3 = a3 - y;
delta2 = delta3*Theta2(:,2:end).*sigmoidGradient(z2);
Theta1_grad = (delta2'*a1)/m;
Theta2_grad = (delta3'*a2)/m;
% COST FUNCTION
J = 1/(2 * m) * sum( (a3-y).^2 );
% Implement regularization with the cost function and gradients.
Theta1_grad(:,2:end) = Theta1_grad(:,2:end) + Theta1(:,2:end)*lambda/m;
Theta2_grad(:,2:end) = Theta2_grad(:,2:end) + Theta2(:,2:end)*lambda/m;
J = J + lambda/(2*m)*( sum(sum(Theta1(:,2:end).^2)) + sum(sum(Theta2(:,2:end).^2)));
此后,我意识到这个问题与提出的问题类似. @Mikhail Erofeev在StackOverflow上,但是在这种情况下,我希望连续变量在0到1之间,因此使用S形函数.
I have since realised that this question is similar to that asked by @Mikhail Erofeev on StackOverflow, however in this case I wish the continuous variable to be between 0 and 1 and therefore use a sigmoid function.
推荐答案
首先,您的费用函数应为:
First, your cost function should be:
J = 1/m * sum( (a3-y).^2 );
我认为您的Theta2_grad = (delta3'*a2)/m;
在更改为delta3 = 1/2 * (a3 - y);
后应该与数值近似值匹配).
I think your Theta2_grad = (delta3'*a2)/m;
is expected to match the numerical approximation after changed to delta3 = 1/2 * (a3 - y);
).
检查此幻灯片了解更多详细信息.
Check this slide for more details.
如果我们的代码之间存在一些细微的差异,我在下面粘贴了我的代码以供您参考.该代码已经与数值逼近函数checkNNGradients(lambda);
进行了比较,相对差小于1e-4
(尽管不满足吴德鲁博士的1e-11
要求)
In case there is some minor discrepancy between our codes, I pasted my code below for your reference. The code has already been compared with numerical approximation function checkNNGradients(lambda);
, the Relative Difference is less than 1e-4
(not meets the 1e-11
requirement by Dr.Andrew Ng though)
function [J grad] = nnCostFunctionRegression(nn_params, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, ...
X, y, lambda)
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1));
m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));
X = [ones(m, 1) X];
z1 = sigmoid(X * Theta1');
zs = z1;
z1 = [ones(m, 1) z1];
z2 = z1 * Theta2';
ht = sigmoid(z2);
y_recode = zeros(length(y),num_labels);
for i=1:length(y)
y_recode(i,y(i))=1;
end
y = y_recode;
regularization=lambda/2/m*(sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)));
J=1/(m)*sum(sum((ht - y).^2))+regularization;
delta_3 = 1/2*(ht - y);
delta_2 = delta_3 * Theta2(:,2:end) .* sigmoidGradient(X * Theta1');
delta_cap2 = delta_3' * z1;
delta_cap1 = delta_2' * X;
Theta1_grad = ((1/m) * delta_cap1)+ ((lambda/m) * (Theta1));
Theta2_grad = ((1/m) * delta_cap2)+ ((lambda/m) * (Theta2));
Theta1_grad(:,1) = Theta1_grad(:,1)-((lambda/m) * (Theta1(:,1)));
Theta2_grad(:,1) = Theta2_grad(:,1)-((lambda/m) * (Theta2(:,1)));
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
这篇关于神经网络:Sigmoid激活函数,用于连续输出变量的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!