算法逻辑在这里:

http://www.cnblogs.com/Azhu/p/4131733.html

贴之前先说下,本来呢是打算自己写一个的,在matlab 上,不过,实在是写不出来那么高效和健壮的,网上有很多实现的代码,例如上面参考里面的,那个代码明显有问题阿,然后因为那里面的代码与逻辑分析是一致的,那在其基础上修改看看,结果发现代码健壮性实在太差了,我的数据集是 70-by-2000 的矩阵,70个样本2000维,结果协方差的逆根本算不出来,全部是inf,那去前50维,还是算不出来,这个虽然逻辑是对的,但是这软件的局限阿。

那只能用其他方法了,有一个写的很好的,下面会贴出来,不过都是矩阵运算,看是能看懂的,不过数学计算实在写不出来,按这么来的也只是跟着其敲了一遍,敲之前还看了半天才懂其的数学计算,matlab 的内置函数也不算熟,这里就顺便写下来好了。

主函数:

  • 12-26 行是初始化类标号和其他参数,12行调用了初始标号的参数,实际上初始化的是R。
  • R 是一个n-by-k 矩阵,每项表示一个i-th 样本在 j-th GM 中的概率值,就是p(x|k)。
  • 因为是初始化,所以14行获取了当前类标号label。
  • 27 - 40 是迭代部分,通过判断是否收敛和迭代次数循环
  • 29 是m-step, 这跟我写的算法逻辑有点不同,不过不影响。
  • 29 m-step是假设知道了标号,训练GMM 模型参数,获得的是model。
  • 30 是 e-step,假设训练好了GMM ,计算样本的分配情况,其中loglikehood 是在e-step 中计算了。
  • 剩下的是收敛判断
 function [label, model, llh] = emgm(X, init)
% Perform EM algorithm for fitting the Gaussian mixture model.
% X: d x n data matrix
% init: k ( x ) or label ( x n, <=label(i)<=k) or center (d x k)
% Written by Michael Chen ([email protected]).
%% initialization
% fprintf('EM for Gaussian mixture: running ... \n');
% load('final_initlize');
% X = dataset().x';
% init = dataset().y';
% R n-by-k 矩阵,表示i-th 样本属于j-th 个类的概率,初始化时候为1、,迭代后变是权重化了。
R = initialization(X,init);
% label 表示n 个样本的类标号。
[~,label(,:)] = max(R,[],);
% 这句是为了处理类标号不连续的情况
R = R(:,unique(label)); %pect = zeros(size(label));
% tol 是阀值控制
tol = 1e-;
maxiter = ;
% loglikehood
llh = -inf(,maxiter);
converged = false;
% 当前迭代的标号
t = ;
while ~converged && t < maxiter
t = t+;
model = maximization(X,R);
[R, llh(t)] = expectation(X,model); [~,label(:)] = max(R,[],);
u = unique(label); % non-empty components
if size(R,) ~= size(u,)
R = R(:,u); % remove empty components
else
converged = llh(t)-llh(t-) < tol*abs(llh(t));
end end
llh = llh(:t);
% if converged
% fprintf('Converged in %d steps.\n',t-);
% llh = t-;
% else
% fprintf('Not converged in %d steps.\n',maxiter);
% llh = maxiter;
% end

初始化函数:

这个函数很简单,没什么好解释的。

 %% init
function R = initialization(X, init)
% 初始化一共用4中方式,一种是给定GMM 模型的参数初始值,一种是给定k 的个数,一种是给各sample 的标号,一种是给出类的中心点
[d,n] = size(X);
if isstruct(init) % initialize with a model
R = expectation(X,init);
elseif length(init) == % random initialization
k = init;
idx = randsample(n,k);
m = X(:,idx);
[~,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/),[],);
[u,~,label] = unique(label);
while k ~= length(u)
idx = randsample(n,k);
m = X(:,idx);
[~,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/),[],);
[u,~,label] = unique(label);
end
R = full(sparse(:n,label,,n,k,n));
elseif size(init,) == && size(init,) == n % initialize with labels
label = init;
k = max(label);
R = full(sparse(:n,label,,n,k,n));
elseif size(init,) == d %initialize with only centers
k = size(init,);
m = init;
[~,label] = max(bsxfun(@minus,m'*X,dot(m,m,1)'/),[],);
R = full(sparse(:n,label,,n,k,n));
else
error('ERROR: init is not valid.');
end

m-step函数:

  • 输入参数 R解释参考上面。
  • 7 计算各类的sample 个数和,一个1-by-k matrix。
  • 8 7中的值除以样本总数就是 GM 的权重,同样是1-by-k matrix。
  • 9 计算GM 样本均值,mu 是个d-by-k matrix,每列表示 k-th GM 的样本均值。
  • 19 计算sqrtR 是为了 15-17行的计算中 结果刚好是R。
  • 15-17 sigma
  • 18行 应该是为了避免sigma 不能逆。
 %% m-step
function model = maximization(X, R)
[d,n] = size(X);
% k 为类个数
k = size(R,);
% 各类的sample个数
nk = sum(R,);
w = nk/n;
mu = bsxfun(@times, X*R, ./nk); Sigma = zeros(d,d,k);
% 这个值是为了下面计算时候得到R,
sqrtR = sqrt(R);
for i = :k
Xo = bsxfun(@minus,X,mu(:,i));
Xo = bsxfun(@times,Xo,sqrtR(:,i)');
Sigma(:,:,i) = Xo*Xo'/nk(i);
Sigma(:,:,i) = Sigma(:,:,i)+eye(d)*(1e-); % add a prior for numerical stability
end model.mu = mu;
model.Sigma = Sigma;
model.weight = w;

e-step:

  • e step 需要解释很多阿。
  • 9 logRho,首先我们知道R 是每项表示一个i-th 样本在 j-th GM 中的概率值,计算公式如下,公式中x是d-by-1 的sample,也就是gamma 中的N()
  • %Gaussian posterior probability
    %N(x|pMiu,pSigma) = 1/((2pi)^(D/2))*(1/(abs(sigma))^0.5)*exp(-1/2*(x-pMiu)'pSigma^(-1)*(x-pMiu))

  • 问题是上面公式不一定能按步求出来阿,例如 sigma^-1,不一定解得出来阿,所以对上面得N()log 一下,后计算,同时避开计算sigma^-1,这个矩阵就是logRho
  • 20-31 便是12 行的函数调用,其中涉及了一堆矩阵转换,验证过没有错,计算的就是log 后的 N()
  • GMM 的EM 实现-LMLPHP
  • 14 上面公式 gamma 的分子部分。
  • 15-16 是计算当前的loglikehood。
  • 17 计算R 矩阵的log 形式。
  • 18 反计算R。
 %% e-step
function [R, llh] = expectation(X, model)
mu = model.mu;
Sigma = model.Sigma;
w = model.weight; n = size(X,);
k = size(mu,);
logRho = zeros(n,k); for i = :k
logRho(:,i) = loggausspdf(X,mu(:,i),Sigma(:,:,i));
end
logRho = bsxfun(@plus,logRho,log(w));
T = logsumexp(logRho,);
llh = sum(T)/n; % loglikelihood
logR = bsxfun(@minus,logRho,T);
R = exp(logR);
%% log pdf
function y = loggausspdf(X, mu, Sigma) d = size(X,);
X = bsxfun(@minus,X,mu);
[U,p]= chol(Sigma);
if p ~=
error('ERROR: Sigma is not PD.');
end
Q = U'\X;
q = dot(Q,Q,); % quadratic term (M distance)
c = d*log(*pi)+*sum(log(diag(U))); % normalization constant
y = -(c+q)/;
05-28 11:14