对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用 32bit,double数据占用 64bit.其实不论是float类型还是double类型,在计算机内存中的存储方式都是遵从IEEE的规范的,float 遵从的是IEEE R32.24 ,而double 遵从的是R64.53。

无论是单精度还是双精度,在内存存储中都分为3个部分:

1) 符号位(Sign):0代表正,1代表为负;

2) 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储;

3) 尾数部分(Mantissa):尾数部分

其中float的存储方式如下图所示:

C语言浮点数存储方式-LMLPHP
而双精度的存储方式为:

C语言浮点数存储方式-LMLPHP

R32.24和R64.53的存储方式都是用科学计数法来存储数据的

用二进制的科学计数法第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit,道理就是在这里。

那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数 点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了, 所以指数部分的存储采用移位存储,存储的数据为元数据+127。

下面就看看8.25和120.5在内存中真正的存储方式:

首先看下8.25,用二进制的科学计数法表示为
:1.0001*2^3  按照上面的存储方式,符号位为0,表示为正;指数位为3+127=130,位数部分为 1.00001,故8.25的存储方式如下:  0xbffff380:    01000001000001000000000000000000

分解如下:0--10000010--00001000000000000000000

符号位为0,指数部分为10000010,位数部分为 00001000000000000000000

同理,120.5在内存中的存储格式如下:  0xbffff384:    01000010111100010000000000000000

分解如下:0--10000101--11100010000000000000000

那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值 呢?其实就是对上面的反推过程,比如给出如下内存数据: 01000001001000100000000000000000

第一步:符号位为0,表示是正数;  第二步:指数位为10000010,换算成十进制为130,所以指数为130-127=3; 第三步:尾数位为01000100000000000000000,换算成十进制为 (1+1/4+1/64); 所以相应的十进制数值为:2^3*(1+1/4+1/64)=8+2+1/8=10.125

05-22 01:28
查看更多