伯努利数法

伯努利数原本就是处理等幂和的问题,可以推出

$$ \sum_{i=1}^{n}i^k={1\over{k+1}}\sum_{i=1}^{k+1}C_{k+1}^i*B_{k+1-i}*(n+1)^i $$

因为

$$\sum_{k=0}^nC_{n+1}^kB_k=0(B_0=1)$$

所以

$$ B_n={- {1\over{n+1}}}(C_{n+1}^0B_0+C_{n+1}^1B_1+……C_{n+1}^{n-1}B_{n-1})$$

伯努利数的证明十分复杂,记住即可。

题目

求 $\sum_{i=1}^ni^k \ mod \ (1e9+7)$,$i \leq 10^{18}, k \leq 2000, T \leq 2000$.

分析

直接用上面的公式,预处理伯努利数,时间为为 $O(k^2)$。

有 $O(klogk)$ 的方法求伯努利数,但是比较复杂,以后再学吧。

单次的时间只有 $O(k)$,$T$ 组查询不会超时。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll mod = 1e9 + ;
const int maxk = + ;
ll n, k; ll C[maxk][maxk], inv[maxk], B[maxk];
void init()
{
//预处理组合数
C[][] = ;
for(int i = ;i < maxk;i++)
{
C[i][] = ;
for(int j = ;j <= i;j++)
C[i][j] = (C[i-][j-] + C[i-][j]) % mod;
}
//预处理逆元
inv[] = ;
for(int i = ;i < maxk;i++)
inv[i] = (mod - mod/i) * inv[mod%i] % mod;
//预处理伯努利数
B[] = ;
for(int i = ;i < maxk-;i++)
{
ll tmp = ;
for(int j = ;j < i;j++)
tmp = (tmp + C[i+][j]*B[j]%mod) % mod;
tmp = tmp * (-inv[i+]) % mod;
B[i] = (tmp + mod) % mod;
}
} ll pw[maxk];
ll cal()
{
n %= mod;    //想一想为什么可以这样做
pw[] = ;
for(int i = ;i <= k+;i++) pw[i] = pw[i-] * (n+) % mod; ll ret = ;
for(int i = ;i <= k+;i++)
ret = (ret + C[k+][i]*B[k+-i]%mod*pw[i]%mod) % mod;
ret = ret * inv[k+] % mod;
return ret;
} int main()
{
init(); int T;
scanf("%d", &T);
while(T--)
{
scanf("%lld%lld", &n, &k);
printf("%lld\n", cal());
} return ;
}

参考链接:https://blog.csdn.net/acdreamers/article/details/38929067

05-11 15:17