题意:UVa 766 Sum of powers (伯努利数)-LMLPHP 求 UVa 766 Sum of powers (伯努利数)-LMLPHP,要求M尽量小。

析:这其实就是一个伯努利数,伯努利数公式如下:

UVa 766 Sum of powers (伯努利数)-LMLPHP

伯努利数满足条件B0 = 1,并且UVa 766 Sum of powers (伯努利数)-LMLPHP

也有UVa 766 Sum of powers (伯努利数)-LMLPHP

几乎就是本题,然后只要把 n 换成 n-1,然后后面就一样了,然后最后再加上一个即可。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 20 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} LL lcm(LL a, LL b){
return a * (b / gcd(a, b));
} struct Fraction{
LL mole;
LL deno;
Fraction() : mole(0), deno(1){ }
Fraction(LL m, LL d) : mole(m), deno(d) { sinal(); } void sinal(){
if(mole < 0 && deno < 0) mole = -mole, deno = -deno;
else if(mole >= 0 && deno < 0) mole = -mole, deno = -deno;
if(deno == 0) mole = 1;
} friend Fraction operator + (const Fraction &lhs, const Fraction &rhs){
LL l = lcm(lhs.deno, rhs.deno);
LL m = lhs.mole * (l/lhs.deno) + rhs.mole * (l/rhs.deno);
return Fraction(m, l);
} friend Fraction operator - (const Fraction &lhs, const Fraction &rhs){
LL l = lcm(lhs.deno, rhs.deno);
LL m = lhs.mole * (l/lhs.deno) - rhs.mole * (l/rhs.deno);
return Fraction(m, l);
} friend Fraction operator * (const Fraction &lhs, const Fraction &rhs){
LL m = lhs.mole * rhs.mole;
LL d = lhs.deno * rhs.deno;
LL g = gcd(m, d);
return Fraction(m / g, d / g);
} friend Fraction operator / (const Fraction &lhs, const Fraction &rhs){
LL m = lhs.mole * rhs.deno;
LL d = lhs.deno * rhs.mole;
LL g = gcd(m, d);
return Fraction(m / g, d / g);
} void print(){
printf("%lld / %lld\n", mole, deno);
}
}; Fraction C[maxn][maxn];
Fraction B[maxn]; void init(){
for(int i = 0; i < 25; ++i)
C[i][0] = C[i][i] = Fraction(1, 1);
for(int i = 2; i < 25; ++i)
for(int j = 1; j < i; ++j)
C[i][j] = C[i-1][j] + C[i-1][j-1];
B[0] = Fraction(1, 1);
for(int i = 1; i < 23; ++i){
for(int j = 0; j < i; ++j)
B[i] = B[i] + C[i+1][j] * B[j];
B[i] = B[i] * Fraction(-1LL, i+1LL);
}
} Fraction ans[maxn]; int main(){
init();
int T; cin >> T;
while(T--){
scanf("%d", &n);
LL l = 1;
for(int i = 1; i <= n+1; ++i){
ans[i] = C[n+1][i] * B[n+1-i] * Fraction(1LL, n+1LL);
l = lcm(l, ans[i].deno);
}
ans[n] = ans[n] + Fraction(1LL, 1LL);
printf("%lld", l);
for(int i = n+1; i > 0; --i)
printf(" %lld", l / ans[i].deno * ans[i].mole);
printf(" 0\n");
if(T) printf("\n");
}
return 0;
}

  

05-08 15:44