https://vjudge.net/problem/51Nod-1228

Description

T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n)。给出n和k,求S(n)。

例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。

Input

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 5000)

第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 2000)Output共T行,对应S(n) Mod 1000000007的结果。

Sample Input

3
5 3
4 2
4 1

Sample Output

225
30
10

分析

求自然数的幂和,有一个基于伯努利数的公式。

51Nod - 1228 序列求和 (自然数幂和+伯努利数)-LMLPHP

于是线性处理出每一项,那么每个case就是线性求解了。

伯努利数怎么计算呢?

首先B0=1,然后有

51Nod - 1228 序列求和 (自然数幂和+伯努利数)-LMLPHP

Bn提取出来,得到

51Nod - 1228 序列求和 (自然数幂和+伯努利数)-LMLPHP

这样就能递推伯努利数了。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <stack>
#include <set>
#include <bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
#define ms(a, b) memset(a, b, sizeof(a))
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define eps 0.0000000001
#define IOS ios::sync_with_stdio(0);cin.tie(0);
#define random(a, b) rand()*rand()%(b-a+1)+a
#define pi acos(-1)
const ll INF = 0x3f3f3f3f3f3f3f3fll;
const int inf = 0x3f3f3f3f;
const int maxn = + ;
const int maxm = + ;
const int mod = 1e9+;
ll C[maxn][maxn],B[maxn],inv[maxn];
inline ll add(ll a){
if(a>=mod) a-=mod;
return a;
}
void init(){
C[][]=;
for(int i=;i<maxn;i++){
C[i][]=C[i][i]=;
for(int j=;j<i;j++){
C[i][j]=add(C[i-][j-]+C[i-][j]);
}
}
inv[]=;
for(int i=;i<maxn;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod; //线性递推逆元
B[]=;
for(int i=;i<maxn-;i++){
B[i]=;
for(int j=;j<i;j++){
B[i]=add(B[i]+C[i+][j]*B[j]%mod);
}
B[i]=add(B[i]*(-inv[i+])%mod+mod);
}
}
ll tmp[maxn];
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
init();
int T;
scanf("%d",&T);
while(T--){
ll n,k;
scanf("%lld%lld",&n,&k);
n%=mod; //这里取个模比较好,求tmp时才不会爆
tmp[]=;
for(int i=;i<maxn;i++) tmp[i]=tmp[i-]*(n+)%mod;
ll ans=;
for(ll i=;i<=k+;i++){
ans=add(ans+C[k+][i]*B[k+-i]%mod*tmp[i]%mod);
}
ans=ans*inv[k+]%mod;
printf("%lld\n",ans);
}
return ;
}
04-28 15:16