问题:979. 在二叉树中分配硬币

给定一个有 N 个结点的二叉树的根结点 root,树中的每个结点上都对应有 node.val 枚硬币,并且总共有 N 枚硬币。

在一次移动中,我们可以选择两个相邻的结点,然后将一枚硬币从其中一个结点移动到另一个结点。(移动可以是从父结点到子结点,或者从子结点移动到父结点。)。

返回使每个结点上只有一枚硬币所需的移动次数。

示例 1:

LeetCode979. 在二叉树中分配硬币-LMLPHP

输入:[3,0,0]
输出:2
解释:从树的根结点开始,我们将一枚硬币移到它的左子结点上,一枚硬币移到它的右子结点上。

示例 2:

LeetCode979. 在二叉树中分配硬币-LMLPHP

输入:[0,3,0]
输出:3
解释:从根结点的左子结点开始,我们将两枚硬币移到根结点上 [移动两次]。然后,我们把一枚硬币从根结点移到右子结点上。

示例 3:

LeetCode979. 在二叉树中分配硬币-LMLPHP

输入:[1,0,2]
输出:2

示例 4:

LeetCode979. 在二叉树中分配硬币-LMLPHP

输入:[1,0,0,null,3]
输出:4

提示:

  1. 1<= N <= 100
  2. 0 <= node.val <= N

链接:https://leetcode-cn.com/contest/weekly-contest-120/problems/distribute-coins-in-binary-tree/

分析:

0.每个节点硬币存在如下几种流向:给父节点、给左子节点、给右子节点;

1.将左右节点看做一个整体,向上和向下流向是对称的,只需要统计一个方向的即可,而且左右节点看做一个整体,分发后在分别内部递归进行后续分发;

2.如果某个节点为空,则流动次数为0;

3.如果某个节点不为空,左节点节点数Node1,硬币数Coins1,右节点数Node2,硬币数Coins2,由于节点数和硬币数一致,所以差值的绝对值即需要的流动次数,即父节点给左节点的X个硬币加上父节点给右节点的Y个硬币是这一层的流动次数

4.分别计算左右节点的移动次数,累加即为结果。

AC Code:

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
//每一个节点都有接受上传下发的需求,只统计单向的即可
//对于单个节点来说,递归
int distributeCoins(TreeNode* root) {
int ret = ;
if (root == NULL)
{
return ;
}
else
{
int tmpleftnodes = ;
int tmpleftconins = ;
int tmprightnodes = ;
int tmprightcoins = ;
int tmpselfnode = ;
int tmpselfcoins = ;
GetInfo(root, tmpleftnodes, tmpleftconins, tmprightnodes, tmprightcoins, tmpselfnode, tmpselfcoins); int tmpdeltaleft = tmpleftconins - tmpleftnodes;
int tmpdeltaright = tmprightcoins - tmprightnodes;
//int tmpselfdelta = tmpselfcoins - tmpselfnode;
int tmpselfdelta = ;
ret = ret + abs(tmpselfdelta - tmpdeltaleft) + abs(tmpselfdelta - tmpdeltaright);
ret = ret + distributeCoins(root->left) + distributeCoins(root->right);
} return ret; }
//获得该节点左右节点数以及所拥有的硬币数
void GetInfo(TreeNode* root, int& leftnodes, int& leftconins, int& rightnodes, int& rightcoins,int& selfnode,int& selfcoins)
{
if (root == NULL)
{
leftnodes = ;
leftconins = ;
rightnodes = ;
rightcoins = ;
selfnode = ;
selfcoins = ;
return;
}
else if (root->left == NULL && root->right == NULL)
{
leftnodes = ;
leftconins = ;
rightnodes = ;
rightcoins = ;
selfnode = ;
selfcoins = root->val;
return;
}
else //if (root->left != NULL && root->right != NULL)
{
int tmpleftnodes = ;
int tmpleftconins = ;
int tmprightnodes = ;
int tmprightcoins = ;
int tmpselfnode = ;
int tmpselfcoins = ;
GetInfo(root->left, tmpleftnodes, tmpleftconins, tmprightnodes, tmprightcoins, tmpselfnode, tmpselfcoins);
leftnodes = tmpleftnodes + tmprightnodes + tmpselfnode;
leftconins = tmpleftconins + tmprightcoins + tmpselfcoins; tmpleftnodes = ;
tmpleftconins = ;
tmprightnodes = ;
tmprightcoins = ;
tmpselfnode = ;
tmpselfcoins = ;
GetInfo(root->right, tmpleftnodes, tmpleftconins, tmprightnodes, tmprightcoins, tmpselfnode, tmpselfcoins);
rightnodes = tmpleftnodes + tmprightnodes + tmpselfnode;
rightcoins = tmpleftconins + tmprightcoins + tmpselfcoins;
selfnode = ;
selfcoins = root->val;
}
} };

其他:

1.由于左右均衡是通过父节点实现的,所以其实不需要看父节点的硬币数量

2.第一code:

typedef signed long long ll;

#undef _P
#define _P(...) (void)printf(__VA_ARGS__)
#define FOR(x,to) for(x=0;x<(to);x++)
#define FORR(x,arr) for(auto& x:arr)
#define ITR(x,c) for(__typeof(c.begin()) x=c.begin();x!=c.end();x++)
#define ALL(a) (a.begin()),(a.end())
#define ZERO(a) memset(a,0,sizeof(a))
#define MINUS(a) memset(a,0xff,sizeof(a))
//------------------------------------------------------- class Solution {
public:
int ret;
pair<int,int> count(TreeNode* root) {
pair<int,int> A={,root->val};
if(root->left) {
auto a=count(root->left);
A.first+=a.first;
A.second+=a.second;
}
if(root->right) {
auto a=count(root->right);
A.first+=a.first;
A.second+=a.second;
}
ret+=abs(A.first-A.second);
return A;
} int distributeCoins(TreeNode* root) {
ret=;
count(root);
return ret;
}
};

pair记录节点个数和所拥有的硬币数,差值都是需要流动的

另一个code:

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* }; class Solution {
public:
int sgn(int x) {
if (x == 0)
return 0;
return x < 0 ? -1 : 1;
}
int maxTurbulenceSize(vector<int>& A) {
int n = A.size();
int l = 0;
int ans = 1;
for (int r = 1; r < n; ++r) {
if (l + 1 < r and sgn(a[r] - a[r - 1]) == sgn(a[r - 1] - a[r - 2])) {
l = r - 1;
}
if (a[r] == a[r - 1]) {
l = r;
}
ans = max(ans, r - l + 1);
} return ans;
}
}; */ class Solution {
public:
int sz(TreeNode* root) {
if (root == nullptr)
return ;
return + sz(root->left) + sz(root->right);
} int coins(TreeNode* root) {
if (root == nullptr) {
return ;
} return root->val + coins(root->left) + coins(root->right);
} int distributeCoins(TreeNode* root) {
// number of coins over edge = diff between coins and nodes for each subtree
if (root == nullptr) {
return ;
}
return abs(coins(root) - sz(root)) + distributeCoins(root->left) + distributeCoins(root->right);
}
};
05-28 12:56