还好$QwQ$
思路:矩阵快速幂
提交:1次
题解:
如图:
注意$n,m$如果小于$k$就不要快速幂了,直接算就行、。。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ull unsigned long long
#define ll long long
#define R register ll
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[<<],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
if(ch==EOF) return EOF; do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=||ch>=);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=;
int k,mod,b[N],c[N];
ll n,m,sumn,summ,sum[N];
ll ans[N],s[N],a[N][N],mem[N][N];
inline void mul(ll a[][N],ll b[][N]) {
R tmp[N][N]; memset(tmp,,sizeof(tmp));
for(R i=;i<=k+;++i) for(R l=;l<=k+;++l) for(R j=;j<=k+;++j)
tmp[i][j]=(tmp[i][j]+a[i][l]*b[l][j])%mod;
memcpy(a,tmp,sizeof(tmp));
}
inline void qpow(ll p) {
R ret[N][N]; memset(ret,,sizeof(ret));
for(R i=;i<=k+;++i) ret[i][i]=;
for(;p;p>>=,mul(a,a)) if(p&) mul(ret,a);
memcpy(a,ret,sizeof(a));
}
inline void main() {
k=g(); for(R i=;i<=k;i++) b[i]=g();
for(R i=;i<=k;++i) c[i]=g();
m=g()-k-,n=g()-k,mod=g();
const int M=mod;
for(R i=;i<=k;++i) sum[i]=(b[i]+sum[i-])%M;
for(R i=;i<=k;++i) s[i]=b[i]%M; s[k+]=sum[k]%M;
for(R i=;i<k;++i) a[i+][i]=;
for(R i=;i<=k;++i) a[i][k]=a[i][k+]=c[k-i+]%M; a[k+][k+]=;
if(n<=) return (void)printf("%lld\n",((sum[k+n-]-sum[k+m-])%M+M)%M);
memcpy(mem,a,sizeof(a));
qpow(n); for(R i=;i<=k+;++i) for(R j=;j<=k+;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; sumn=ans[k+];
if(m<=) return (void)printf("%lld\n",((sumn-sum[k+m])%M+M)%M);
memset(ans,,sizeof(ans)); memcpy(a,mem,sizeof(a));
qpow(m); for(R i=;i<=k+;++i) for(R j=;j<=k+;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; summ=ans[k+];
printf("%lld\n",((sumn-summ)%M+M)%M);
}
}
signed main() {
Luitaryi::main();
return ;
}
2019.07.21