题目啊常规解法(DFS)在此就不赘述了。。。

直接进入正题

  众所周知,N皇后是NP完全类问题,n稍微大了点求解过程就会变得很长。

算法方面很难再有质的效率突破,但这不妨在其他细节上下下功夫。

  揆诸常规解法,采用了数组来做mark,以行为每一层进行回溯算法,每个操作周期中无非就做了下面这些事情:

更新元素

判定元素

做出反应

  更新元素这上面基本上想不到能有啥提升空间了(一次更新多个??似乎更加复杂了不谈不谈)。。。

做出反应嘛也同样没啥可以进步的地方(做出预判类反应??也复杂了,不谈不谈)。。。

很显然,有提升空间的就是判定元素环节了。

  首先,从存储上考虑:

我们采用了三个数组来分别mark两个斜线和一列的占用情况(这里用"占用情况"表示此处是否能落子,如果被‘占用了’,则不能放棋子)

可不可以并成一个数组呢?那么这一个数组就要能够表示三个信息:当前位置一列两斜线的占用情况。有时即使能表示了,但是当移动到下一个位置的时候又得获得新的信息。。似乎不可行。

  (于是我们又开始无聊地在纸上模拟算法过程了。。。。)

  诶,然后就会发现,当进行DFS的时候,比如进行到第k层,放下了一个棋子,然后我们就要到下面一层去继续判定,此刻我们用到的信息是第k+1层的占用情况,而k+1的占用情况受到第k层情况的直接影响,如下图:

N皇后问题的二进制优化详细思路-LMLPHP

我们会发现第三层涂色的三个位置就不能放棋子了,

  而除了第k层的影响,前k-1层也对第k+1层有着制约:

N皇后问题的二进制优化详细思路-LMLPHP

  再回来看经典算法,每一次标记直接就否定了一条线上的位置,我们跳出这个思维,可不可以“步步为营”,进入到下一行的同时更新出下一行的占用信息?如果这样的话,一个数组足矣。  

  再思考,都已经一个数组了(相当于一串数字),而且每个格子就两个状态:有棋子,没棋子。

    显然,二进制是不二选择!而且二进制运算的效率比较高!

  大概的思路出来了,还有最后一个难点,就是前k-1层的占用信息如何安全过度到第k+1行。。

  动手尝试了就不难发现这个规律:一个棋子会产生三种影响效果,斜向影响的,到下一层“占用”会斜向相应的方向偏移一格;垂直影响的,到下一层“占用”依旧在相应位置。

如图:

N皇后问题的二进制优化详细思路-LMLPHP

  这时候就出现了三种类型的信息更新,一串二进制就难以实现了。。。那就三串呗,比起数组仍然不亏了。

  大的逻辑疙瘩在脑子里基本上解开了,下面开始改代码:

  首先,咱不用数组,改成int就够了。其次,考虑到每次信息更新的特点,我们可以用函数的形参来传递,省的搞个全局变量让人不爽。

  函数头这亚子:

void Dfs(int i,int left,int col,int right)//分别是 层数  反斜杠mark  一列mark  斜杠mark 

然后仍然是一般DFS解法的框架,只需要把其中用bool数组mark判断的地方用二进制方法进行替换即可。

放代码:

 void Dfs(int i,int left,int col,int right)//分别是 层数  反斜杠mark  一列mark  斜杠mark
{
if (i > N) //判断是否已经枚举完了N行
{
showOneSolution(); //枚举完了就输出(此刻我们处于N+1行)
return; //返回到第N行
}
for (int j = N-; j >=; --j) //为啥J倒过来数呢?方便下面if中的偏移判断
{
if (!(((left|col|right)>>j)&))//(自己解读,有助于提升能力 (好吧我懒))
{
ans[i] = N-j;
Dfs(i + ,(left|(<<j))<<,(col|(<<j)),(right|(<<j))>>); //更新“占用信息”的工作就放在参数传递这里了
//这样子的好处就是,回溯的时候不用做什么恢复处理,
//因为这一层的东西基本没变动
}
}
}

这么多括号嵌套的。。哎呀我知道这可读性差,不提倡不提倡!

但是咱们现在是学习又不是工作,尽量读一些奇怪的代码有助于提高读代码能力(可着劲找借口··)

好了下面放上完整代码:

 #include<iostream>

 using namespace std;

 int total = ;
int N = ;
int ans[] = { }; //结果还是要用数组存滴
void showOneSolution()//用来显示一个解
{
total++;
for (int i = ; i<=N; ++i)
{
cout << ans[i] << " ";
}
cout << endl;
}
void Dfs(int i,int left,int col,int right)//分别是 层数 反斜杠mark 一列mark 斜杠mark
{
if (i > N) //判断是否已经枚举完了N行
{
showOneSolution(); //枚举完了就输出(此刻我们处于N+1行)
return; //返回到第N行
}
for (int j = N-; j >=; --j) //为啥J倒过来数呢?方便下面if中的偏移判断
{
if (!(((left|col|right)>>j)&))//(自己解读,有助于提升能力 )
{
ans[i] = N-j;
Dfs(i + ,(left|(<<j))<<,(col|(<<j)),(right|(<<j))>>); //更新“占用信息”的工作就放在参数传递这里了
//这样子的好处就是,回溯的时候不用做什么恢复处理,
//因为这一层的东西基本没变动
}
}
} int main()
{
cin >> N;
Dfs(,,,);
cout << total;
system("pause");
return ;
}

总结:

  巧妙运用位运算可以达到锦上添花的效果(装逼),不过大多数人看到位运算&|^<<>>啥的就打哈欠。

  但是恰巧就有那么一些问题,能够完美契合二进制和位运算的特殊性质(不是指这个==),当你遇到的时候,你就会惊异于0101010···的奇妙。

05-26 08:12