假设检验(Hypothesis Testing)

1. 什么是假设检验呢?

  假设检验又称为统计假设检验,是数理统计中根据一定假设条件由样本推断总体的一种方法。

  什么意思呢,举个生活中的例子:买橘子(借用http://www.360doc.com/content/16/0617/08/31718185_568436468.shtml

  当我们去买橘子的时候,无论甜不甜,老板都会说:“挺甜的,不信拿一个尝尝”。我们随手拿一个(这就相当于抽样),此时我们对于这些橘子甜或不甜的判断全基于这个橘子(样本),为什么不拿总体来判断呢?老板能让你把橘子都吃一遍?(大多数情况下无法直接对总体进行判断)。当我们吃到的橘子是甜的,我们会想,随便拿一个就是甜的,那么这些橘子大部分都是甜的;当我们吃到的是酸的,我们会想,随便拿一个就是酸的,我运气有那么不好吗,肯定是大部分橘子都是酸的。

  假设检验就是对总体(全部橘子)提出假设(甜或不甜),然后通过样本(随便拿一个橘子)进行统计计算,来推断假设是否成立的一种方法。

2.假设检验的依据是什么呢?

  假设检验重要的依据是人们的一条普遍经验,即小概率事件在一次实验中很难发生,如果一旦发生,就认为原来的假设不成立,从而拒绝H

  例如, 某彩票抽奖处声称该彩票中奖概率为p(A) = 99.99%,现在我们做出如下假设

假设检验(Hypothesis Testing)-LMLPHP

  若假设H正确,则抽奖一次不中奖的概率为0.01%,这是一个小概率事件。那么我们通过抽奖一次,来检验该假设。

假设检验(Hypothesis Testing)-LMLPHP

  假设检验的基本思想:先对总体的参数或分布函数的表达式作出某种假设,然后构造出一个在假设成立下出现可能性甚小的事件(即小概率事件)。如果试验或抽样的结果使该小概率事件出现了,这与小概率事件原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设;若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时假设与实验结果是一致的,或者说可以接受这个假设。

  但是,我们要注意的是:在假设检验中“拒绝接受反映了决策者在所面对的样本证据下,对该命题所采取的一种态度、倾向性而不是在逻辑上“证明该命题正确与否!又回到刚开始买橘子的例子,我们在拿一个尝过后,对所有橘子下的结论(大部分是甜的或者大部分是酸的)都是我们的主观猜想,而非客观事实。

3.怎么做假设检验呢?

  假设检验的一般步骤为:

  (I)跟据实际问题提出零假设(H)与备择假设(H);

  (II)选择合适的检验统计量,并确定在H为真时的分布;

  (III)给定显著性水平α,确定临界点,得到接受域和否定域;

  (IV)计算检验统计量的样本值;

  (V)做出判断,若值落在否定域,则拒绝H;若落在接受域,则在所选择的显著性水平上,不能拒绝H。

假设

  我们将对总体提出的某种假设称为零假设(也称原假设),记为H;将与原假设矛盾的假设称为备择假设(也称对立假设),记为H.

  零假设是一种无差别假设,表示要被拒绝的目的。备择假设是与H相反的结论。若H被拒绝,H就可能被接受。比如,研究两种药物对治疗同一种疾病的效果不同。这个结论就是要研究的假设,为了检验该假设,我们假设用μ表示药物对疾病的治疗效果,写出原假设H:μ = μ(相同的治疗效果);备择假设H:μ ≠ μ(不同的治疗效果)。如果得到的信息拒绝H,则可以接受H,即两种药物对同一疾病的治疗效果是不同的。

  H的叙述是由研究假设的性质确定的。若研究假设只是考察两个事物有差异,则备择假设H:μ ≠ μ;若考察其差值的方向,则H或者为μ> μ,或者为μ< μ。

  我们称形如

H : μ = μ , H : μ ≠ μ

的假设检验为双边检验;

形如

H : μ ≥ μ , H : μ < μ

的假设检验为左边检验;

形如

H : μ ≤ μ , H : μ > μ

的假设检验为右边检验。

  左边检验和右边检验统称为单边检验。

显著性水平

  前面说到假设检验的依据是小概率事件原理,但是,很难发生并不等于绝不发生,因此,在得出对H的判定时,可能会发生两类错误:第一类错误是当H实际上为真时拒绝H;第二类错误是当H实际为假时接受H。第一类错误是“以真为假”的错误,犯第一类错误的概率由α给出,α越大,H越容易错误地被拒绝;第二类错误是“以假为真”的错误,犯第二类错误的概率通常用β表示。可以发现犯这两类错误的概率之间存在反比关系,所以,在样本量确定为n时,α减小会使β增大。若希望同时减小犯两类错误的可能性,必须增加样本数目n。

  定义α:当原假设H为真时,假设检验统计量的样本值却落在接受域之外,因而拒绝原假设H,这类错误称为第一类错误,其发生的概率称为犯第一类错误的概率或称弃真概率,通常记为α,即

P(拒绝H | H为真) = α

  定义β:当原假设H为不真时,假设检验统计量的样本值却落在接受域之内,因而接受原假设H,这类错误称为第二类错误,其发生的概率称为犯第二类错误的概率或称存伪概率,通常记为β,即

P(接受H | H不真) = β

 

  在实际应用时,我们通常只能控制犯第一类错误的概率,也就是错误地拒绝H的概率,这个概率就叫做显著性水平。一般检验时,取α = 0.05,α = 0.01较多。为了保证β不至于太大,样本数量不能太少在。在生物信息学里,样本量是很大的,所以β也会很小,因此重点关注α。

否定域

  我们将拒绝零假设H的区域称为拒绝域。否定域的大小与显著性水平α的选取有关。

  否定域的位置(不是大小)与备择假设H的性质有关。若H是指出预定方向的,如H:μ > μ,则假设检验为单边检验;若H未指出预定的方向,如H:μ≠μ,则为双边检验。图1.1是α=0.05的单边检验否定域,图1.2是α=0.05的双边检验否定域。可以看出,对于同一显著性水平α,两种否定域的位置不同,但总的大小并没有什么不同。

  在进行统计检验时,若根据样本数据计算的统计量数值落入否定域,则认为零假设H不成立,称作在显著性水平α下拒绝H;否则认为零假设H不成立,称作在显著性水平α下不能拒绝H.

假设检验(Hypothesis Testing)-LMLPHP

参考 《非参数统计》易丹辉

05-04 12:35