题目描述

在一张图内,两点$i,j$之间有$p$的概率的概率生成一条边。求该图不出现大小$\ge 4$连通块的概率。

$n \le 100,答案在实数意义下$


题目分析

首先应当想到的是枚举连通块大小为$1,2,3$的点数。

有一种想法是枚举出三种点个数之后组合算出这种情况下的方案数。但是这个方案数会非常大,不取模则不现实。

于是应当dp地来看这个问题,考虑每次加一个点后概率是如何变化的。于是只需要分类讨论一下5种情况就好了。

重点在于用dp的视角看待这个问题

 #include<bits/stdc++.h>

 int n;
double p,q,ans,f[][][]; double qmi(double a, int b)
{
double ret = ;
for (; b; b>>=,a=a*a)
if (b&) ret *= a;
return ret;
}
int main()
{
scanf("%d%lf",&n,&p);
q = (1000.0-p)/1000.0, p /= 1000.0;
f[][][] = ;
for (int ix=,i,j,k; ix<=n; ix++)
for (int jx=; jx<=ix; jx++)
for (int kx=; kx+jx<=ix; kx+=)
if ((ix-jx-kx)%==){
i = jx, j = kx, k = ix-jx-kx;
if (i) f[i][j][k] += qmi(q, ix-)*f[i-][j][k];
if (j) f[i][j][k] += qmi(q, ix-)*p*(i+1.0)*f[i+][j-][k];
if (k){
f[i][j][k] += qmi(q, ix-)*p*(j+2.0)*f[i][j+][k-]+qmi(q, ix-)*p*p*(j/+)*f[i][j+][k-]+qmi(q, ix-)*p*p*(i+2.0)*(i+1.0)/2.0*f[i+][j][k-];
}
}
for (int i=; i<=n; i++)
for (int j=; i+j<=n; j+=)
if ((n-i-j)%==)
ans += f[i][j][n-i-j];
printf("%.4lf\n",1.0-ans);
return ;
}

END

05-27 16:42