1.图的表示方法

图:G=(V,E),V代表节点,E代表边。

图有两种表示方法:邻接链表和邻接矩阵

(1)无向图的两种表示

图-图的表示、搜索算法及其Java实现-LMLPHP

图-图的表示、搜索算法及其Java实现-LMLPHP

(2)有向图的两种表示

图-图的表示、搜索算法及其Java实现-LMLPHP

2.图的搜索算法

图的搜索算法即:广度优先搜索和深度优先搜索

相信这两种搜索算法的基本概念根据名字就可窥得一二,不多说,直接上例子。

图-图的表示、搜索算法及其Java实现-LMLPHP

如上有向图,创建三个类:

  • 点Vertex:包括点的名称(String)和访问标志(boolean)。
  • 边Edge:包括前驱点(Vertex)和后继点(Vertex)。
  • 图Graph:包括点集合(ArrayList<Vertex>)和边集合(ArrayList<Edge>)。

以下是构建好的图信息以及点遍历结果。

图-图的表示、搜索算法及其Java实现-LMLPHP

以下是Java源码。BFS辅以队列以非递归方法完成,DFS以递归方法完成。注释得很详细,我就不多解释了@(^<>^)@。

 import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue; class Graph{
ArrayList<Vertex> vertexs=new ArrayList<Vertex>();
ArrayList<Edge> edges=new ArrayList<Edge>(); public void addVertex(Vertex vertex) {
vertexs.add(vertex);
} public void addEdge(Edge edge) {
edges.add(edge);
}
} //顶点类
class Vertex{
String name;
boolean visited=false; //标记该点是否被查看-广度优先专用
boolean visited2=false; //标记该点是否被查看-深度优先专用 public Vertex(String name) {
this.name=name;
} @Override
public String toString() {
return "[" + name + "]";
}
}
//边类 有向图
class Edge{
Vertex start;
Vertex end; public Edge(Vertex start,Vertex end) {
this.start=start;
this.end=end;
} @Override
public String toString() {
return "(" + start + "," + end + ")";
}
} public class SearchGraph {
//广度优先 非递归
static void BFS(Graph graph) {
ArrayList<Vertex> vertexs=graph.vertexs;
ArrayList<Edge> edges=graph.edges;
Queue<Vertex> queue = new LinkedList<Vertex>(); //创建队列 queue.add(vertexs.get(0)); //顶节点放入队列
vertexs.get(0).visited=true; //顶节点设为已阅
System.out.print(vertexs.get(0)); while(!queue.isEmpty()) {
Vertex vertex=queue.remove();
for(Edge edge:edges) {
if(edge.start.equals(vertex)&&edge.end.visited==false) {
queue.add(edge.end);
edge.end.visited=true;
System.out.print(edge.end);
}
}
} } //深度优先 递归
static void DFS(Graph graph,Vertex vertex) { //参数:图、点信息
System.out.print(vertex);
vertex.visited2=true; for(Edge edge:graph.edges) {
if(edge.start.equals(vertex)&&edge.end.visited2==false) {
DFS(graph,edge.end);
}
}
} public static void main(String[] args) {
// TODO Auto-generated method stub //构造有向图
Graph graph=new Graph();
Vertex v0=new Vertex("v0");
Vertex v1=new Vertex("v1");
Vertex v2=new Vertex("v2");
Vertex v3=new Vertex("v3");
Vertex v4=new Vertex("v4");
Vertex v5=new Vertex("v5");
Vertex v6=new Vertex("v6");
graph.addVertex(v0);
graph.addVertex(v1);
graph.addVertex(v2);
graph.addVertex(v3);
graph.addVertex(v4);
graph.addVertex(v5);
graph.addVertex(v6);
Edge e0=new Edge(v0,v1);
Edge e1=new Edge(v0,v2);
Edge e2=new Edge(v0,v3);
Edge e3=new Edge(v1,v4);
Edge e4=new Edge(v1,v5);
Edge e5=new Edge(v2,v4);
Edge e6=new Edge(v3,v5);
Edge e7=new Edge(v4,v6);
Edge e8=new Edge(v5,v6);
graph.addEdge(e0);
graph.addEdge(e1);
graph.addEdge(e2);
graph.addEdge(e3);
graph.addEdge(e4);
graph.addEdge(e5);
graph.addEdge(e6);
graph.addEdge(e7);
graph.addEdge(e8);
//构造有向图 //测试图创建结果
ArrayList<Vertex> vertexs=graph.vertexs;
ArrayList<Edge> edges=graph.edges;
Iterator iVertex=vertexs.iterator();
Iterator iEdge=edges.iterator();
System.out.println("点集合:");
while(iVertex.hasNext()) {
System.out.print(iVertex.next());
}
System.out.println();
System.out.println("边集合:");
while(iEdge.hasNext()) {
System.out.print(iEdge.next());
}
//测试图创建结果 //遍历
System.out.println("");
System.out.println("广度优先遍历:");
BFS(graph);
System.out.println("");
System.out.println("深度优先遍历:");
DFS(graph,v0);
//遍历
} }
05-22 15:01