Canny算法是边缘检测的一个经典算法,比单纯用一些微分算子来检测的效果要好很多,其优势有以下几点:

  1. 边缘误检与漏检率低。
  2. 边缘定位准确,且边界较细。
  3. 自带一定的滤噪功能,或者说,对噪声的敏感度要比单纯算子低。
  4. 具有多个可调整参数,可影响算法的时间与时效。

  但是Canny相比单纯算子来说计算量偏大,下面简单介绍算法的过程。

图像去噪: 

    这一步不是必须的,一般噪声少的图,让Canny自己应付就行。若噪声较多,一般采用高斯滤波。滤波后,噪声灰度下降,对边缘的影响

  小于噪点。

获取梯度强度与方向: 

    用一阶微分算子获取梯度强度和方向,如sobel算子,强度与方向公式如下:

    Canny算法检测边缘-LMLPHP

    要用两个矩阵分别存储强度和方向,其中方向公式需要根据具体算子情况更改正负号,最终使上下左右、45度方向可以区分开来。例如下图所示,

    这里将上下放在(60,90)和(-90,-60)区间,因为它们在非极大抑制时取的都是上下邻域;将左右放在(-30,30)区间,因为它们抑制时取的是

    左右邻域;将处于斜向上对角线的梯度角放在(30,60),它们在抑制时取45度的两个邻域;将斜向下对角线上的梯度角放在(-60,-30),它们在

    抑制时取-45度的两个邻域。

    Canny算法检测边缘-LMLPHP

非极大抑制:

    该步骤目的是删除非边缘像素,主要做法是对每个像素点,与它梯度方向的相邻两像素作灰度比较(比如左右两个像素),如果该像素点

  灰度比它两个相邻像素都大,则保留其灰度值,否则抑制(赋值0)。

双阈值处理:

    设定一个高阈值和低阈值,对灰度大于高阈值的像素点,确认为强边缘,赋值255,低于低阈值的点赋值0,介于之间的点保留其灰度值,作为弱边缘。

滞后边界追踪:

    这一步主要是处理弱边缘,总的思路是找到每一个弱边缘的连通域,判断该连通域与强边缘有无相邻,如果存在至少一个像素与强边缘相邻,则将该连

  通域都作为强边缘(赋值255),如果没有一个像素与强边缘相邻,则将整个连通域视为噪声(赋值0)。

    所以,关键在于找到连通域,通常有DFS与BFS两种算法可以处理连通域问题,这里采用BFS算法,思路如下:

    1.扫描整个图像,判断每个像素是否为弱边缘,如果是,进入步骤2(查找连通域)。

    2.用connect数组保存组成连通域的所有点;用weak数组保存待检查八领域的弱点;用checked数组标记已被扫描过的弱点(也就是连通域里的点),标

       记1表示已扫描;用变量real_edge记录是否有检测到强点。将刚才判定的弱边缘点压入connect、weak,checked相应位置标记为1。进入步骤3。

    3.创建new_weak用来保存新的待检测八领域的弱点。依次对weak中每个待检测点,遍历其八领域,找到所有未被checked标记的新弱点,压入new_weak

       、connect,checked相应位置标记为1,同时检查八领域内是否有强边缘,有则标记real_edge=1。对weak所有待检测点检查完后,如果new_weak不为

      空,则将new_weak赋给weak,重复步骤3;如果new_weak为空,则表示一个连通域寻找完毕,进入步骤4。

    4.如果real_edge=1,则将连通域每个点的灰度赋值255,否则赋值0;弹出connect、weak、checked中所有点。

    5.重复步骤1-4,直道图像扫描完毕。

    

  经过以上这些步骤,Canny算法就已经实现了。我们要做的就是根据图像调整双阈值和滤波强度。下面是Canny的一个处理实例,其中给出了单纯sobel检测和

Canny检测的效果。通过下图可以知道,Canny检测的边缘要薄的多,细节处理更好,噪声也更少。

 Canny算法检测边缘-LMLPHP

  

  以下是matlab代码实现:

  

%canny前先高斯滤波
function edge=canny(gaussianimg,lthres,hthres)
sobel_operator_x=[-,,;
-,,;
-,,];
sobel_operator_y=[-,-,-;
,,;
,,];
%梯度强度
diff_x=filter2(sobel_operator_x,gaussianimg);
diff_y=filter2(sobel_operator_y,gaussianimg);
diff=uint8(sqrt((diff_x.^+diff_y.^)/));
%梯度方向
[sizex,sizey]=size(gaussianimg);
angle=zeros(sizex,sizey);
edge=uint8(zeros(sizex,sizey));
for i=:sizex
for j=:sizey
angle(i,j)=atan(-diff_y(i,j)/diff_x(i,j))/pi*;
end
end
%非极大抑制,排除非边缘像素
for i=:sizex-
for j=:sizey-
if (angle(i,j)>||angle(i,j)<-)
break;
elseif angle(i,j)>= || angle(i,j)<=-
if (diff(i,j)>diff(i-,j)&&diff(i,j)>=diff(i+,j))
edge(i,j)=uint8(diff(i,j));
end
elseif (angle(i,j)<=-)
if (diff(i,j)>diff(i-,j-)&&diff(i,j)>=diff(i+,j+))
edge(i,j)=uint8(diff(i,j));
end
elseif angle(i,j)>=
if (diff(i,j)>diff(i-,j+)&&diff(i,j)>=diff(i+,j-))
edge(i,j)=uint8(diff(i,j));
end
elseif angle(i,j)<||angle(i,j)>-
if (diff(i,j)>diff(i,j-)&&diff(i,j)>=diff(i,j+))
edge(i,j)=uint8(diff(i,j));
end
end
end
end %双阈值
for i=:sizex
for j=:sizey
if (edge(i,j)>=hthres)
edge(i,j)=; %一定为边缘
elseif (edge(i,j)<=lthres)
edge(i,j)=; %一定为非边缘
end
end
end %候选边缘,与已确定边缘相连才认为是边缘
for i=:sizex-
for j=:sizey-
if (edge(i,j)>&&edge(i,j)<)
real_edge=;%边缘真假标志
checked=zeros(sizex,sizey);%标记已经扫描过的弱点
weak=zeros(,);%存储需要查看八领域的弱点
connect=zeros(,);%存储一条联通的所有弱点
weak_length=;
connect_length=;
%压入第一个弱边缘点
weak(weak_length,:)=[i,j];
connect(connect_length,:)=[i,j];
checked(i,j)=;
while(weak_length>)
new_weak=zeros(,);
new_weak_length=;
for k=:weak_length
%搜索当前弱点的八领域
x=weak(k,);y=weak(k,);
if (x>=&&x<=sizex-&&y>=&&y<=sizey-)
for m=x-:x+
for n=y-:y+
if edge(m,n)>&&edge(m,n)<&&checked(m,n)==%领域有弱点且未被扫描过
new_weak_length=new_weak_length+;
connect_length=connect_length+;
new_weak(weak_length,:)=[m,n];%压入新弱点集合
connect(connect_length,:)=[m,n]; %压入连通域
checked(m,n)=; %标记已扫描
elseif edge(m,n)==
real_edge=; %边缘为真,等待连通域全部被识别
end
end
end
end
end
weak_length=new_weak_length;%当前深度的弱点集合全部检查过八领域,开始检查新一深度的弱点集合
weak=new_weak;%如果新集合没有弱点,则跳出while
end
%一个连通域已在connect里形成
for z=:connect_length
edge(connect(z,),connect(z,))=uint8((* real_edge));
end end
end
end
end

  

05-12 07:17