1、复现VGG训练自定义图像分类,成功了哈哈。

  需要代码工程可联系博主qq号,在左边连接可找到。

  核心代码:

# coding:utf-8
import tensorflow as tf
import os
from load_vgg19_model import net os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def VGG19_image_classifier(X,Y,nn_classes): vgg19_path = "./vgg19_model/imagenet-vgg-verydeep-19.mat"
net_list,mean_pixel,all_layers = net(vgg19_path,X) vgg19_pool5 = net_list[-1]["pool5"] vgg19_pool5_shape = vgg19_pool5.get_shape().as_list() vgg19_pool5_number = vgg19_pool5_shape[1]*vgg19_pool5_shape[2]*vgg19_pool5_shape[3] weights = {
'wd1': tf.Variable(tf.random_normal([vgg19_pool5_number, 4096])),
'wd2': tf.Variable(tf.random_normal([4096, 4096])),
'out': tf.Variable(tf.random_normal([4096, nn_classes]))
} biases = {
'bd1': tf.Variable(tf.zeros([4096])),
'bd2': tf.Variable(tf.zeros([4096])),
'out': tf.Variable(tf.zeros([nn_classes]))
} # 全连接一层
_densel = tf.reshape(vgg19_pool5, [-1, vgg19_pool5_number]) fc6 = tf.add(tf.matmul(_densel,weights["wd1"]),biases["bd1"])
relu6 = tf.nn.relu(fc6) # 全连接二层 fc7 = tf.add(tf.matmul(relu6,weights["wd2"]),biases["bd2"])
relu7 = tf.nn.relu(fc7) # 输出层
fc8 = tf.add(tf.matmul(relu7,weights["out"]),biases["out"]) # out = tf.nn.softmax(fc8)
out = fc8 # 损失函数 loss
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=Y, logits=out)) # 计算交叉熵 # 优化目标 optimizing
optimizing = tf.train.AdamOptimizer(0.0001).minimize(loss) # 使用adam优化器来以0.0001的学习率来进行微调 # 精确度 accuracy
correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(out, 1)) # 判断预测标签和实际标签是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # 想要保存的模型参数,方便加载找到。
tf.add_to_collection("loss", loss)
tf.add_to_collection("out", out)
tf.add_to_collection("accuracy", accuracy)
tf.add_to_collection("optimizing", optimizing) return {
"loss": loss,
"optimizing": optimizing,
"accuracy": accuracy,
"out": out,
"mean_pixel":mean_pixel
}

  

  小批量梯度训练方法如下图,才训练1次达到88%。

复现VGG19训练自定义图像分类-LMLPHP

05-11 22:22
查看更多