这两个系列的题目其实是同一套题,可以互相转换。
首先我们定义一个数组: prefixSum (前序和数组)
Given nums: [1, 2, -2, 3]
prefixSum: [0, 1, 3, 1, 4 ]
现在我们发现对prefixSum做Best Time To Buy And Sell Stock和对nums做Maximum Subarray,结果相同。
接下来我们就利用prefixSum解这两个系列的题目。
Question
Given an array of integers, find a contiguous subarray which has the largest sum.
Given the array [−2,2,−3,4,−1,2,1,−5,3]
, the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
The subarray should contain at least one number.
Solution
Sum of subarray i to j can be calculated by prefixSum[j] - prefixSum[i - 1].
Two variables, so we hope to make prefixSum[i - 1] minimum, while prefixSum[j] maximum.
Example
nums 1 1 1 -4 6 1 -5
prefixSum 0 1 2 3 -1 5 6 1
min 0 0 0 0 0 -1 -1 -1
max sub 0 1 2 3 3 6 7 7
public class Solution {
public int maxSubArray(ArrayList<Integer> nums) {
int length = nums.size();
// Construct prefixSum
int[] prefixSum = new int[length + 1];
prefixSum[0] = 0;
for (int i = 0; i < length; i++)
prefixSum[i + 1] = prefixSum[i] + nums.get(i);
// Traverse prefixSum
// min: minimum number before i
// result: maximum subarray from 0 to i
int min = 0;
int result = Integer.MIN_VALUE;
for (int i = 0; i < length; i++) {
int current = prefixSum[i + 1];
result = Math.max(result, current - min);
min = Math.min(current, min);
}
return result;
}
}
Similar: Minimum Subarray
public class Solution {
public int minSubArray(ArrayList<Integer> nums) {
int length = nums.size();
int sum = 0;
int maxSum = 0;
int minSum = Integer.MAX_VALUE;
for (int i = 0; i < length; i++) {
sum += nums.get(i);
minSum = Math.min((sum - maxSum), minSum);
maxSum = Math.max(maxSum, sum);
}
return minSum;
}
}
Question
Given an array of integers, find two non-overlapping subarrays which have the largest sum.
The number in each subarray should be contiguous.
Return the largest sum.
For given [1, 3, -1, 2, -1, 2], the two subarrays are [1, 3] and [2, -1, 2] or [1, 3, -1, 2] and [2], they both have the largest sum 7.
The subarray should contain at least one number
Solution
The problem can be translated as
Finding a strip line in the array, to make the sum of its max left subarray and max right subarray is max.
We can traverse the input array and list all possible value of the strip line, and then calculated its left max and right max. The time complexity is O(n). But this still wastes a lot of time for duplicated calculation.
Actually we can just travers twice and get result. Time complexity is O(n).
maxLeft is max subarray on strip line's left side (inclusive). maxRight is max subarray on strip line's right side (inclusive).
nums 1 1 1 -4 6 1 -5
prefixSumLeft 0 1 2 3 -1 5 6 1
minL 0 0 0 0 0 -1 -1 -1
maxLeft 1 2 3 3 6 7 7
prefixSumRight 1 0 -1 -2 2 -4 -5 0
minR -5 -5 -5 -5 -5 -5 0 0
maxRight 7 7 7 7 7 1 0
public class Solution { public int maxTwoSubArrays(ArrayList<Integer> nums) {
int length = nums.size();
int[] left = new int[length];
int[] right = new int[length];
int sum = 0;
int minSum = 0;
int maxSum = Integer.MIN_VALUE;
// left
for (int i = 0; i < length; i++) {
sum += nums.get(i);
maxSum = Math.max(maxSum, (sum - minSum));
left[i] = maxSum;
minSum = Math.min(minSum, sum);
}
// right
sum = 0;
minSum = 0;
maxSum = Integer.MIN_VALUE;
for (int i = length - 1; i >= 0; i--) {
sum += nums.get(i);
maxSum = Math.max(maxSum, (sum - minSum));
right[i] = maxSum;
minSum = Math.min(minSum, sum);
} int result = Integer.MIN_VALUE;
for (int i = 0; i < length - 1; i++)
result = Math.max(result, left[i] + right[i + 1]);
return result;
}
}
Question
Given an array of integers and a number k, find k non-overlapping
subarrays which have the largest sum.
The number in each subarray should be contiguous.
Return the largest sum.
Given [-1,4,-2,3,-2,3]
, k=2
, return 8
The subarray should contain at least one number
Solution