本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

 
Problem Description
Hotaru Ichijou recently is addicated to math problems. Now she is playing with N-sequence.
Let's define N-sequence, which is composed with three parts and satisfied with the following condition:
1. the first part is the same as the thrid part,
2. the first part and the second part are symmetrical.
for example, the sequence 2,3,4,4,3,2,2,3,4 is a N-sequence, which the first part 2,3,4 is the same as the thrid part 2,3,4, the first part 2,3,4 and the second part 4,3,2 are symmetrical.

Give you n positive intergers, your task is to find the largest continuous sub-sequence, which is N-sequence.

 
Input
There are multiple test cases. The first line of input contains an integer T(T<=20), indicating the number of test cases.

For each test case:

the first line of input contains a positive integer N(1<=N<=100000), the length of a given sequence

the second line includes N non-negative integers ,each interger is no larger than 109 , descripting a sequence.

 
Output
Each case contains only one line. Each line should start with “Case #i: ”,with i implying the case number, followed by a integer, the largest length of N-sequence.

We guarantee that the sum of all answers is less than 800000.

 
Sample Input
1
10
2 3 4 4 3 2 2 3 4 4
 
Sample Output
Case #1: 9
 
 
正解:manacher
解题报告:
  求形如ABA(B与A对称0)的串的最大长度。
  先用manacher预处理出以每个点为中心的最长回文子串长度,枚举第二个部分即B的起点,再枚举串的长度,发现可行则更新答案(代码中非常清楚了)。可以用已经得到的ans剪枝。
  辣鸡HDU评测速度飘忽不定,刷了几次才跑过。
 
 
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 200011;
int n,len,a[MAXN],p[MAXN],ans;
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void manacher(){
//memset(p,0,sizeof(p));
for(int i=1;i<=n;i++) p[i]=0;
int maxR=0,id=0;
for(int i=1;i<=n;i++) {
if(i<maxR) p[i]=min(p[2*id-i],maxR-i);
else p[i]=1;
for(;i+p[i]<=n && a[i-p[i]]==a[i+p[i]];p[i]++) ;
if(i+p[i]>maxR) { maxR=i+p[i]; id=i; }
}
} inline void work(){
int T=getint(); int Case=0;
while(T--) {
len=getint(); a[0]=-2; a[1]=-1; n=1; for(int i=1;i<=len;i++) { a[++n]=getint(); a[++n]=-1; }
manacher(); ans=1;
//+2的原因是对称中心只能取在区分符号上
for(int i=3;i<n/*!!!*/;i+=2) //枚举the second part
for(int j=ans;j<=p[i];j+=2) //枚举一个部分的长度,利用ans剪枝
if(p[i+j-1]>=j) //如果the third part的回文长度大于等于j,即j可以作为答案(part2和part3对称)
ans=j;
Case++; ans/=2; ans*=3;//只算了两个part的长度
printf("Case #%d: %d\n",Case,ans);
}
} int main()
{
work();
return 0;
}

  

05-29 01:08