[HDU3709]Balanced Number
试题描述
A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the number, the distance from a digit to the pivot is the offset between it and the pivot. Then the torques of left part and right part can be calculated. It is balanced if they are the same. A balanced number must be balanced with the pivot at some of its digits. For example, 4139 is a balanced number with pivot fixed at 3. The torqueses are 4*2 + 1*1 = 9 and 9*1 = 9, for left part and right part, respectively. It's your job
to calculate the number of balanced numbers in a given range [x, y].
to calculate the number of balanced numbers in a given range [x, y].
输入
The input contains multiple test cases. The first line is the total number of cases T (0 < T ≤ 30). For each case, there are two integers separated by a space in a line, x and y. (0 ≤ x ≤ y ≤ 10).
输出
For each case, print the number of balanced numbers in the range [x, y] in a line.
输入示例
输出示例
数据规模及约定
见“输入”
题解
令 f[k][i][j][s] 表示考虑数的前 i 位,最高位为 j,支点在位置 k,支点右力矩 - 左力矩 = s 的数有多少个。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define LL long long LL read() {
LL x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 20
#define maxs 1800
LL f[maxn][maxn][10][maxs]; int num[maxn];
LL sum(LL x) {
if(!x) return 1;
int cnt = 0; LL tx = x;
while(x) num[++cnt] = x % 10, x /= 10;
LL ans = 0;
for(int i = cnt - 1; i; i--)
for(int k = 1; k <= i; k++)
for(int j = 1; j <= 9; j++) ans += f[k][i][j][0];
for(int i = cnt; i; i--) {
for(int k = cnt; k; k--) {
int s = 0;
for(int x = cnt; x > i; x--) s += (x - k) * num[x];
if(s < 0 || s >= maxs) continue;
for(int j = i < cnt ? 0 : 1; j < num[i]; j++) {
ans += f[k][i][j][s];
// if(!j && !s && i > 1) ans--;
}
}
}
for(int k = 1; k <= cnt; k++) {
int s = 0;
for(int x = 1; x <= cnt; x++) s += (x - k) * num[x];
if(!s){ ans++; break; }
}
ans++;
return ans;
} int main() {
for(int j = 0; j <= 9; j++) f[1][1][j][0] = 1;
for(int k = 2; k < maxn; k++)
for(int j = 0; j <= 9; j++) f[k][1][j][(k-1)*j] = 1;
for(int k = 1; k < maxn; k++)
for(int i = 1; i < maxn - 1; i++)
for(int j = 0; j <= 9; j++)
for(int s = 0; s < maxs; s++) if(f[k][i][j][s]) {
for(int x = 0; x <= 9 && s + (k - i - 1) * x >= 0; x++)
if(s + (k - i - 1) * x < maxs) f[k][i+1][x][s+(k-i-1)*x] += f[k][i][j][s];
// printf("%d %d %d %d: %lld\n", k, i, j, s, f[k][i][j][s]);
}
int T = read();
while(T--) {
LL l = read(), r = read();
LL ans = sum(r); if(l) ans -= sum(l - 1);
printf("%lld\n", ans);
} return 0;
}