1759:最长上升子序列

描述
一个数的序列b,当b < b < ... < b的时候,我们称这个序列是上升的。对于给定的一个序列(aa, ..., a),我们可以得到一些上升的子序列(aa, ..., a),这里1 <= i < i < ... < i <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

n方作法:
dp[i]表示以i为结尾,所形成的最长上升自序列
每次当[i]>a[j]的时候,即说明j可以放在a的后面
dp[i] = max(dp[j]+1,dp[i])
     for (int i = ;i <= n;i++)
for (int j = ;j <= i-;j++)
{
if (a[j]<a[i])
dp[i] = max(dp[j]+,dp[i]);
}

完整代码:

 #include <cstdio>
#include <iostream>
using namespace std;
int dp[];
int main()
{
int n;
int a[];
scanf ("%d",&n);
int dp[];
for (int i = ;i <= n;i++)
{
scanf ("%d",&a[i]);
dp[i] = ;
}
for (int i = ;i <= n;i++)
for (int j = ;j <= i-;j++)
{
if (a[j]<a[i])
dp[i] = max(dp[j]+,dp[i]);
}
int ans=;
for (int i = ;i <= n;i++)
ans=max(dp[i],ans);
cout<<ans;
return ;
}

nlogn作法:

     for (int i = ;i <= n;i++)
{
if (c[num]<a[i])
c[++num]=a[i];
else
{
int pos=lower_bound(c+,c+num+,a[i])-c;
c[pos]=a[i];
}
}
printf ("%d",num);
05-28 22:36