问题

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/4090 访问。

给定一个 N 叉树,返回其节点值的前序遍历

例如,给定一个 3叉树 :

C#LeetCode刷题之#589-N叉树的前序遍历(N-ary Tree Preorder Traversal)-LMLPHP

返回其前序遍历: [1,3,5,6,2,4]

说明: 递归法很简单,你可以使用迭代法完成此题吗?


Given an n-ary tree, return the preorder traversal of its nodes' values.

For example, given a 3-ary tree:

Return its preorder traversal as: [1,3,5,6,2,4].

Note: Recursive solution is trivial, could you do it iteratively?


示例

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/4090 访问。

public class Program {

    public static void Main(string[] args) {
var root = new Node(1,
new List<Node> {
new Node(3, new List<Node> {
new Node(5, null),
new Node(6, null)
}),
new Node(2, null),
new Node(4, null)
}); var res = Preorder(root);
ShowArray(res); res = Preorder2(root);
ShowArray(res); Console.ReadKey();
} private static void ShowArray(IList<int> array) {
foreach(var num in array) {
Console.Write($"{num} ");
}
Console.WriteLine();
} public static IList<int> Preorder(Node root) {
var list = new List<int>();
Pre(root, ref list);
return list;
} public static void Pre(Node root, ref List<int> list) {
if(root == null) return;
list.Add(root.val);
if(root.children == null) return;
foreach(var child in root.children) {
Pre(child, ref list);
}
return;
} public static IList<int> Preorder2(Node root) {
var list = new List<int>();
if(root == null) return list;
var stack = new Stack<Node>();
stack.Push(root);
while(stack.Any()) {
var pop = stack.Pop();
list.Add(pop.val);
if(pop.children != null) {
for(var i = pop.children.Count() - 1; i >= 0; i--)
stack.Push(pop.children[i]);
}
}
return list;
} public class Node {
public int val;
public IList<Node> children;
public Node() { }
public Node(int _val, IList<Node> _children) {
val = _val;
children = _children;
}
} }

以上给出2种算法实现,以下是这个案例的输出结果:

该文章的最新版本已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/4090 访问。

1 3 5 6 2 4
1 3 5 6 2 4

分析:

显而易见,以上2种算法的时间复杂度均为: C#LeetCode刷题之#589-N叉树的前序遍历(N-ary Tree Preorder Traversal)-LMLPHP 。

05-25 09:44