http://acm.hdu.edu.cn/showproblem.php?pid=5884

参考:https://www.cnblogs.com/jhz033/p/5879452.html

【题意】

n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少。

【思路】

k越大,代价越小,二分k,check k

对于每个k,问题转化为n个结点的最优k叉树,用堆做时间复杂度为O(nlogn),再加上二分总复杂度是O(nlogn^2)

然后T了。。。听说加输入挂可以卡过去

正解是这样的:

原数组排序,预处理时间复杂度O(nlogn)

然后求最优k叉树,用一个队列维护合并后的值,而不需要加入原来的堆里重排序(利用新加入的内结点本身的单调性),每次时间复杂度为O(n)

O(nlogn)+O(logn)*O(n),所以最后时间复杂度是O(nlogn)

n个结点不一定能构成最优k叉树,需要补 k-1-((n-1)%(k-1))个权为0的虚结点。

 #include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
int n;
ll t;
const int maxn=1e5+;
ll a[maxn];
bool judge(int mid){
int cnt=(n-)/(mid-);
queue<ll> Q;
if((n-)%(mid-)!=){
cnt++;
for(int i=;i<(mid--(n-)%(mid-));i++){
Q.push();
}
}
ll ans=;
int l=;
while(cnt--){
ll tmp=;
for(int i=;i<mid;i++){
if(!Q.empty()&&(l>=n||Q.front()<=a[l])){
tmp+=Q.front();
Q.pop();
}else{
tmp+=a[l++];
}
}
ans+=tmp;
Q.push(tmp);
}
if(ans<=t) return true;
return false;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%lld",&n,&t);
for(int i=;i<n;i++){
scanf("%lld",&a[i]);
}
sort(a,a+n);
int l=,r=n;
while(l<=r){
int mid=(l+r)>>;
if(judge(mid)){
r=mid-;
}else{
l=mid+;
}
}
printf("%d\n",l);
}
return ;
}
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
int n;
ll t;
const int maxn=1e5+;
ll a[maxn];
bool judge(int mid){
queue<ll> Q1,Q2;
for(int i=;i<n;i++) Q1.push(a[i]);
if((n-)%(mid-)!=){
for(int i=;i<(mid--(n-)%(mid-));i++){
Q2.push();
}
}
ll ans=;
while(Q1.size()+Q2.size()>=mid){
ll tmp=;
for(int i=;i<mid;i++){
if(Q1.empty()&&!Q2.empty()){
tmp+=Q2.front();
Q2.pop();
}else if(Q2.empty()&&!Q1.empty()){
tmp+=Q1.front();
Q1.pop();
}else if(!Q1.empty()&&!Q2.empty()){
if(Q1.front()<=Q2.front()){
tmp+=Q1.front();
Q1.pop();
}else{
tmp+=Q2.front();
Q2.pop();
}
}
}
// cout<<tmp<<endl;
ans+=tmp;
Q2.push(tmp);
}
if(ans<=t) return true;
return false;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%lld",&n,&t);
for(int i=;i<n;i++){
scanf("%lld",&a[i]);
}
sort(a,a+n);
int l=,r=n;
while(l<=r){
int mid=(l+r)>>;
if(judge(mid)){
r=mid-;
}else{
l=mid+;
}
}
printf("%d\n",l);
}
return ;
}
05-16 11:09