1. 简介
利用OpenCV读取图像,转换为灰度图像,绘制该灰度图像直方图。点击直方图,控制台输出该灰度级像素个数。
2. 原理
(1) 实现原理较为简单,主要利用了OpenCV读取图像,并转换为灰度图像;
srcImg = imread(" ......"); // “....” 代表图像地址
if (srcImg.empty()) {
return -;
}
imshow(WINDOW_SRCIMG, srcImg);
Mat grayImg;
cvtColor(srcImg, grayImg, CV_BGR2GRAY);
imshow(WINDOW_GRAYIMG, grayImg);
(2) 利用Mat类新建一个固定分辨率的画布,统计处于每一灰度级像素个数,在该画布上绘制灰度直方图。
int nRows = ,nCols=;
Mat g_dstImg(nRows,nCols, CV_8UC1, Scalar::all()); // 新建画布
同时避免画布中该灰度级太高而超出画布范围,在本程序中采用了等比例缩小的方法。
int MaxCount = arrayMax(grayLevel,);//寻找在处于某一灰度级中个数最多的像素个数
yscaleRate = double(nRows)/MaxCount ;//y缩放比例
double xscaleRate = nCols / ;//x缩放比例
3. 实施细节
// 灰度直方图.cpp : 定义控制台应用程序的入口点。
// Topic: 绘制灰度图的直方图; 转载请注明出处:Chen_HW (https://www.cnblogs.com/chen-hw/p/11668119.html)
// Env: VS2015 + Debug x64 + OpenCV3.4.1
// Date:2018.11.22 by Chen_HW
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>
#define WINDOW_SRCIMG "【源图】"
#define WINDOW_GRAYIMG "【灰度图】"
#define WINDOW_HIST "【直方图】"
using namespace std;
using namespace cv;
int arrayMax(int g_arr[], int num);
Mat drawHist(Mat &g_srcImg);
void MouseHandle(int event, int x, int y, int flags, void *param);
Point clickPoint,displayPoint;
bool downFlag = false;
Mat srcImg;
double yscaleRate = ; int main()
{
system("color 3f");
srcImg = imread(" ......"); // “....” 代表图像地址
if (srcImg.empty()) {
return -;
}
imshow(WINDOW_SRCIMG, srcImg);
Mat grayImg;
cvtColor(srcImg, grayImg, CV_BGR2GRAY);
imshow(WINDOW_GRAYIMG, grayImg);
Mat histImg = drawHist(grayImg);
imshow(WINDOW_HIST, histImg);
setMouseCallback(WINDOW_HIST, MouseHandle, (void *)&histImg);//(void *)&srcImg传递给void *param
waitKey();
return ;
}
Mat drawHist(Mat &g_srcImg) {
int nRows = ,nCols=;
Mat g_dstImg(nRows,nCols, CV_8UC1, Scalar::all()); // 新建画布
int grayLevel[] = {};
for (int i = ; i < g_srcImg.rows; ++i) {
for (int j = ; j < g_srcImg.cols; ++j) {
grayLevel[(int)g_srcImg.at<uchar>(i, j)]++;
}
}
int MaxCount = arrayMax(grayLevel,);//寻找在处于某一灰度级中个数最多的像素个数
yscaleRate = double(nRows)/MaxCount ;//y缩放比例
double xscaleRate = nCols / ;//x缩放比例
int yAxis[], xAxis[];
for (int m = ; m < ; m++) {
yAxis[m] = int(grayLevel[m]*yscaleRate);
}
//绘制直方图
for (int n = ; n < ; n++) {
if (n == ) {
xAxis[n + ] = xAxis[n];
}
rectangle(g_dstImg, Point(xAxis[n], yAxis[n]), Point( xAxis[n+], ), Scalar(), -);
//-1表示填充矩形框;正值表示不填充矩形框,更方便观察灰度级像素个数的分布;
//但因为后面需要用到填充的情况,故设置成填充状态 } return g_dstImg;
}
//num:数组元素个数;g_max:返回最大值
int arrayMax(int g_arr[],int num) {
int g_max = ;
int i = ;
while (i < num) {
if ( g_arr[i]>= g_max) {
g_max = g_arr[i];
i++;
}
else {
i++;
}
} return g_max;
}
//event 鼠标事件(如按下鼠标左键、左键抬起、鼠标移动等) x、y 鼠标坐标
void MouseHandle(int event, int x, int y, int flags, void *param) {
Mat &g_srcImg = *(Mat *)(param);
Mat g_tempImg = g_srcImg.clone();
int nCount=;//该列白色像素点个数
int nLevelCount = ;
char text[];//存储文本信息
float g_rate;//该列像素点占总像素点个数的比例
imshow(WINDOW_HIST, g_srcImg);
switch (event) {
case EVENT_LBUTTONDOWN:
clickPoint.x = x;
clickPoint.y = y;
downFlag = true;
break;
default:
break;
}
if (downFlag) {
//displayPoint.x = clickPoint.x;
for (int i = ; i < g_srcImg.rows; ++i) {
if (int(g_srcImg.at<uchar>(i, x)) == ) {
++nCount;
}
}
nLevelCount = (nCount / yscaleRate);
g_rate = float(nCount/ yscaleRate) / (srcImg.rows*srcImg.cols);//此处计算的比例不是精确的
cout << "该灰度级像素点个数: " << nLevelCount << ";占总像素个数的比例: "<<g_rate << endl;
sprintf_s(text, "Rate:%f",g_rate );//该灰度级像素个数占总个数的比例;
putText(g_tempImg, text, clickPoint,FONT_HERSHEY_PLAIN,,Scalar(,,));
imshow(WINDOW_HIST, g_tempImg);
downFlag = false;
}
}
4. 结果
结果如下图所示,点击右侧每一级灰度直方图,在控制台中会输出该灰度级像素个数,并显示占总像素比例。