问题描述
我正在尝试实施,但我不清楚一些要点:
- 在等式(9)像素位置x处的深度值(Z轴)
- 如何估计渐变值▽D使用感兴趣点周围的8个邻近点?
>
-
如上所述, 意味着对于其中 x = [xy]的 中的 x , D( x )是像素位置的深度
li>
假设我们在 D( x )中的深度值5周围有以下邻域 x :
8 1 6
3 5 7
4 9 2
然后使用泰勒展开
d x 。 grad / strong> + 错误 = D( x + dx ) - D( x
我们为邻域点获得八个方程。
1 0] g + e = 7 - 5
[-1 0] g + e = 3 - 5
[0 1] g + e = 9 - 5
[0 -1] g + e = 1 - 5
[11] g + e = 2-5
[1 -1] g + e = 6 - 5
[ = 4 - 5
[-1 -1] g + e = 8 - 5
我们可以以矩阵形式表示 Ag + e = b 为
[1 0; -1 0; 0; 0 -1; 11; 1 -1; -1 1; -1 -1] g + e = [2; -2; 4; -4; -3;
然后最小化平方误差
|| Ag - b | | 。用于最小化此错误的 g 的解析解法形式为
g =(A A) A b p>
I am trying to implement the surface normal estimation proposed by Hinterstoisser et al (2011) but I'm not clear with some points:
- In equation (9), is D(x) corresponding to the depth value (Z-axis) at pixel location x?
- How to estimate the value of the gradient ▽D using 8 neighboring points around the point of interest?
As mentioned, D is a dense range image meaning that for any pixel location x in D where x = [x y], D(x) is the depth at pixel location x (or simply D(x, y)).
Estimating the optimal Gradient in a least-square sense
Suppose we have the following neighborhood around the depth value 5 in D(x) for some x:
8 1 6
3 5 7
4 9 2
Then, using the Taylor expansion
dx.grad(x) + error = D(x + dx) - D(x)
we get eight equations for the neighborhood points
[1 0]g + e = 7 - 5
[-1 0]g + e = 3 - 5
[0 1]g + e = 9 - 5
[0 -1]g + e = 1 - 5
[1 1]g + e = 2 - 5
[1 -1]g + e = 6 - 5
[-1 1]g + e = 4 - 5
[-1 -1]g + e = 8 - 5
that we can represent in matrix form Ag + e = b as
[1 0;-1 0;0 1;0 -1;1 1;1 -1;-1 1;-1 -1]g + e= [2;-2;4;-4;-3;1;-1;3]
Then minimize the squared error||Ag - b||. The analytical solution for g that minimizes this error is of the form
g = (AA)Ab
这篇关于在密集范围图像中的表面法线的估计的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!